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Different Kinds of Finite Automata

I One-way finite automata on words

I Two-way finite automata on words

I Four-way finite automata on pictures

I Automata that walk on trees or graphs

I In this presentation: Cayley graphs of finitely generated
infinite groups
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Cayley Graphs

I Take a group (G , ·) generated by S = {g1, . . . , gn}
I We usually assume S symmetric: if g ∈ S then g−1 ∈ S

I The Cayley graph of G has vertex set G and edges
g → g · gi for i = 1, . . . , n

I It is infinite if G is, and every vertex has degree n
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Cayley Graphs

Example: the discrete plane Z2

(−2,−1)

(−2, 0)

(−2, 1)

(−2, 2)

(−1,−1)

(−1, 0)

(−1, 1)

(−1, 2)

(0,−1)

(0, 0)

(0, 1)

(0, 2)

(1,−1)

(1, 0)

(1, 1)

(1, 2)

(2,−1)

(2, 0)

(2, 1)

(2, 2)

S



Group-Walking
Automata

Ville Salo,
Ilkka Törmä
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Cayley Graphs

Example: the free group F2 = 〈a, b〉

, with vertex coloring
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Cayley Graphs

Example: the free group F2 = 〈a, b〉, with vertex coloring

1F2 a

b

a−1

b−1

ab−1

a2

ab

ba−1

b2

ba

a−1b−1

a−2

a−1b

b−1a−1

b−2

b−1a

0 0

1

0

0

0

1

1

01

1

1

0

1

11

1



Group-Walking
Automata

Ville Salo,
Ilkka Törmä
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Group-Walking Automata

Definition (Group-Walking Automaton)

I A group-walking automaton is a multi-head finite
automaton that walks on the Cayley graph of G

I It recognizes vertex colorings of G

I A coloring is rejected if, started from some single vertex
in some initial states, the heads eventually return
together and enter a rejecting state

I The class of all sets of colorings accepted by automata
(with k heads) is S(G ) (S(G , k))
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Group-Walking Automata

The heads of group-walking automata can:

I Take synchronized steps of variable length along the
edges of the graph

I Read the colors of the vertices, and the states of other
heads on the same vertex

I Change their internal state

They cannot:

I Take arbitrarily long steps

I Read the colors of faraway vertices, or the states of
faraway heads

I Change the colors of the vertices
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Group-Walking Automata

I Every set of colorings in S(G ) is defined by forbidden
finite patterns: it is a G -subshift

I Which subshifts are in S(G , k) for different k? How
does this depend on G ?

I On finite words, trees and grids, we have infinite
hierarchies: adding more heads increases the model’s
power
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Previous Results

V.S. & I.T.: Plane-Walking Automata (presented at
AUTOMATA 2014, Himeji, Japan)

I S(Zd , 3) = S(Zd), contains exactly the Π0
1 subshifts

I S(Zd , 1) ( S(Zd , 2) ⊆ S(Zd , 3); second inclusion strict
for d ≥ 3, unknown for d ≤ 2

Π0
1 (or effectively closed) subshifts have computable sets of

forbidden patterns
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Our Results

Theorem (Three Heads)

If G is not torsion, then S(G , 3) contains all Π0
1 subshifts; if

G also has decidable word problem, then the classes coincide
and S(G ) = S(G , 3)

I Proof idea: Simulate a certain type of Turing-universal
counter machine on the Cayley graph using 3 heads



Group-Walking
Automata

Ville Salo,
Ilkka Törmä
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Our Results

Theorem (Characterization of Torsion Groups)

For all G , every subshift in S(G ) is intrinsically Π0
1; the

classes coincide iff S(G ) = S(G , 4) iff G is not torsion

I Intrinsically Π0
1 subshifts have sets of forbidden patterns

computable from the word problem of G

I G is a torsion group if every g ∈ G has finite order:
gn = 1G for some n > 0

I Proof idea: In non-torsion case, decide word problem
with 4 heads; walking on torsion group results in a loop
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Three Heads

Definition (Arithmetical Program)

An arithmetical program is a one-head finite automaton
equipped with an unbounded counter, and it can

I walk on the Cayley graph of G and read its colors

I increment and decrement the counter

I check the remainder of the counter modulo fixed
positive integers, and whether it is 0

I multiply or divide the counter by fixed positive integers

I reject the coloring at any point

Arithmetical programs recognize exactly the Π0
1 subshifts



Group-Walking
Automata

Ville Salo,
Ilkka Törmä
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Three Heads

Simulating an arithmetical program with 3 heads:

I h ∈ G has infinite order

I counter value is distance between p and c in powers of h

I multiplication, division and movement are implemented
using synchronized signals and the z head

g gh gh2 gh3 gh4 gh5

p c

z

Counter = 3
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Four Heads

I With a fourth head we can solve the word problem of G

I For a product of generators gi1 · · · gin , leave the fourth
head behind and walk along the gij with the others

I If they return to the fourth head, gi1 · · · gin = 1G
I Then we can recognize all intrinsically Π0

1 subshifts
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Torsion Groups

I Finitely generated infinite torsion groups are hard to
construct (Burnside Problem)

I In a torsion group, a single head walking in any
direction ends up in a loop
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Torsion Groups

Lemma (Navigation on Torsion Groups)

Let G be a torsion group. There exists dG : N3 → N such
that for all k-head q-state automata that can take steps of
length r , no head can move more than dG (k , q, r) steps
away from its starting point on the all-0 coloring of G .

Proof by induction on k
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Torsion Groups

First case: one head (k = 1)

g
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Torsion Groups

Second case: all heads stay close to each other

Combine into one head with larger state set, and reduce to
the k = 1 case

qa

qc qd

qb

qabcd
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Combine into one head with larger state set, and reduce to
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Torsion Groups

Third case: some heads travel far from others

Apply induction hypothesis to every separated group: they
never communicate again and travel a bounded distance

qa

qb qc

qd
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Torsion Groups

Corollary

If G is a torsion group, then the subshift of colorings
x : G → {0, 1} with #{g ∈ G | xg = 1} ≤ 1 is not in S(G )

In particular, S(G ) does not contain all intrinsically Π0
1

subshifts



Group-Walking
Automata

Ville Salo,
Ilkka Törmä
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Future Work

We showed that S(G ) = S(G , 4) if G is not a torsion group,
and S(G ) = S(G , 3) if G also has a decidable word problem

Conjecture (4 Heads Better than 3)

There exists a non-torsion group G such that
S(G , 3) ( S(G , 4)

Conjecture (Infinite Hierarchy)

There exists a torsion group G such that the hierarchy
S(G , k)k≥1 is infinite
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The End

Thank you!
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