Ville Salo¹ <u>Ilkka Törmä</u>²

¹Center for Mathematical Modeling University of Chile

²TUCS – Turku Centre for Computer Science University of Turku

> AUTOMATA 2015 Turku, Finland

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction Our Model Our Results Future Work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Different Kinds of Finite Automata

- One-way finite automata on words
- Two-way finite automata on words
- Four-way finite automata on pictures
- Automata that walk on trees or graphs

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction

Our Model Our Results Future Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Different Kinds of Finite Automata

- One-way finite automata on words
- Two-way finite automata on words
- Four-way finite automata on pictures
- Automata that walk on trees or graphs
- In this presentation: Cayley graphs of finitely generated infinite groups

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction

Our Model Our Results Euture Work

Group-Walking Automata

Ville Salo, <u>Ilkka Törmä</u>

Introduction

Our Model

Our Results

Future Work

- Take a group (G, \cdot) generated by $S = \{g_1, \ldots, g_n\}$
- We usually assume *S* symmetric: if $g \in S$ then $g^{-1} \in S$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- ► The Cayley graph of G has vertex set G and edges g → g ⋅ g_i for i = 1,..., n
- It is infinite if G is, and every vertex has degree n

Example: the discrete plane \mathbb{Z}^2

$$(-2,2) (-1,2) (0,2) (1,2) (2,2)$$

$$(-2,1) (-1,1) (0,1) (1,1) (2,1)$$

$$(-2,0) (-1,0) (0,0) (1,0) (2,0)$$

$$(-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1)$$

Group-Walking Automata

Ville Salo, <u>Ilkka Törmä</u>

Introduction Our Model Our Results

Example: the discrete plane \mathbb{Z}^2

$$(-2,2) (-1,2) (0,2) (1,2) (2,2)$$

$$(-2,1) (-1,1) (0,1) (1,1) (2,1)$$

$$(-2,0) (-1,0) (0,0) (1,0) (2,0)$$

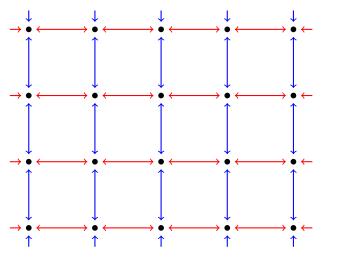
$$(-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1)$$

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction Our Model Our Results

Example: the discrete plane \mathbb{Z}^2



Group-Walking Automata

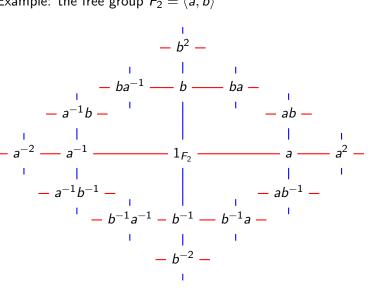
Ville Salo, Ilkka Törmä

Introduction

Our Model Our Results Future Work

・ロ・・西・・ヨ・・ヨ・ うへぐ

Example: the free group $F_2 = \langle a, b \rangle$



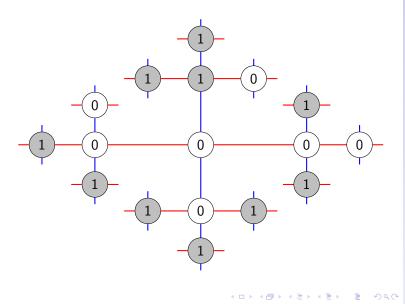
Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example: the free group $F_2 = \langle a, b \rangle$, with vertex coloring



Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction Our Model Our Results Future Work

Definition (Group-Walking Automaton)

- A group-walking automaton is a multi-head finite automaton that walks on the Cayley graph of G
- It recognizes vertex colorings of G
- A coloring is *rejected* if, started from *some* single vertex in *some* initial states, the heads eventually return together and enter a rejecting state
- The class of all sets of colorings accepted by automata (with k heads) is S(G) (S(G, k))

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction

Our Model Our Results Future Work

The heads of group-walking automata can:

- Take synchronized steps of variable length along the edges of the graph
- Read the colors of the vertices, and the states of other heads on the same vertex
- Change their internal state

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction

Our Model

Our Results

Future Work

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

The heads of group-walking automata can:

- Take synchronized steps of variable length along the edges of the graph
- Read the colors of the vertices, and the states of other heads on the same vertex
- Change their internal state

They cannot:

- Take arbitrarily long steps
- Read the colors of faraway vertices, or the states of faraway heads
- Change the colors of the vertices

Group-Walking Automata

Ville Salo, Ilkka Törmä

ntroduction

Our Model

Our Results

- Every set of colorings in S(G) is defined by forbidden finite patterns: it is a G-subshift
- ► Which subshifts are in S(G, k) for different k? How does this depend on G?
- On *finite* words, trees and grids, we have infinite hierarchies: adding more heads increases the model's power

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction

Our Model

Our Results

Automata Ville Salo,

Ilkka Törmä

Group-Walking

Introduction

Our Model

Our Results

Future Work

V.S. & I.T.: *Plane-Walking Automata* (presented at AUTOMATA 2014, Himeji, Japan)

- $\mathcal{S}(\mathbb{Z}^d,3) = \mathcal{S}(\mathbb{Z}^d)$, contains exactly the Π_1^0 subshifts
- S(Z^d, 1) ⊊ S(Z^d, 2) ⊆ S(Z^d, 3); second inclusion strict for d ≥ 3, unknown for d ≤ 2

 Π^0_1 (or effectively closed) subshifts have computable sets of forbidden patterns

Our Results

Theorem (Three Heads)

If G is not torsion, then S(G,3) contains all Π_1^0 subshifts; if G also has decidable word problem, then the classes coincide and S(G) = S(G,3)

 Proof idea: Simulate a certain type of Turing-universal counter machine on the Cayley graph using 3 heads

Group-Walking Automata

Ville Salo, Ilkka Törmä

Our Model
Our Results

Our Results

Theorem (Characterization of Torsion Groups)

For all G, every subshift in $\mathcal{S}(G)$ is intrinsically Π_1^0 ; the classes coincide iff $\mathcal{S}(G) = \mathcal{S}(G, 4)$ iff G is not torsion

- Intrinsically Π⁰₁ subshifts have sets of forbidden patterns computable from the word problem of G
- G is a torsion group if every g ∈ G has finite order: gⁿ = 1_G for some n > 0
- Proof idea: In non-torsion case, decide word problem with 4 heads; walking on torsion group results in a loop

Group-Walking Automata

Ville Salo, Ilkka Törmä

ntroduction

Jur Model

Our Results

Three Heads

Definition (Arithmetical Program)

An *arithmetical program* is a one-head finite automaton equipped with an unbounded *counter*, and it can

- walk on the Cayley graph of G and read its colors
- increment and decrement the counter
- check the remainder of the counter modulo fixed positive integers, and whether it is 0
- multiply or divide the counter by fixed positive integers
- reject the coloring at any point

Arithmetical programs recognize exactly the Π_1^0 subshifts

Group-Walking Automata

Ville Salo, Ilkka Törmä

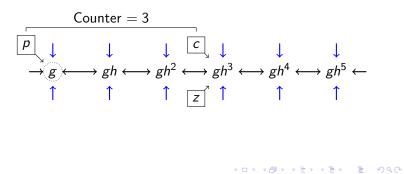
ntroduction

Our Results

Three Heads

Simulating an arithmetical program with 3 heads:

- ▶ h ∈ G has infinite order
- counter value is distance between p and c in powers of h
- multiplication, division and movement are implemented using synchronized signals and the z head



Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction Our Model Our Results Future Work

Four Heads

• With a fourth head we can solve the word problem of G

- ► For a product of generators g_{i1} ··· g_{in}, leave the fourth head behind and walk along the g_{ii} with the others
- ▶ If they return to the fourth head, $g_{i_1} \cdots g_{i_n} = 1_G$
- Then we can recognize all intrinsically Π⁰₁ subshifts

Group-Walking Automata

Ville Salo, Ilkka Törmä

ntroduction Dur Model

Our Results

⁻uture Work

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction

Our Mode

Our Results

Future Work

 Finitely generated infinite torsion groups are hard to construct (*Burnside Problem*)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

 In a torsion group, a single head walking in any direction ends up in a loop

Lemma (Navigation on Torsion Groups)

Let G be a torsion group. There exists $d_G : \mathbb{N}^3 \to \mathbb{N}$ such that for all k-head q-state automata that can take steps of length r, no head can move more than $d_G(k, q, r)$ steps away from its starting point on the all-0 coloring of G.

Proof by induction on k

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction

Our Mode

Our Results

First case: one head (k = 1)

Ville Salo, <u>Ilkka Törmä</u>

Introduction

Our Mode

Our Results

Future Work

・ロト ▲理 ト ▲田 ト ▲田 ト ▲日 ト

First case: one head (k = 1)

Ville Salo, Ilkka Törmä

Introduction

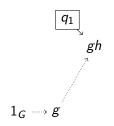
Our Mode

Our Results

Future Work

くりょう 小田 マイビット 山下 ふんく

First case: one head (k = 1)



Ville Salo, Ilkka Törmä

Introduction

Our Mode

Our Results

Future Work

くちゃく 御をえばをえばす ふしゃ

First case: one head (k = 1)

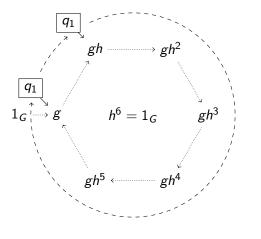
Group-Walking Automata

Ville Salo, Ilkka Törmä

Introductior

Our Model

Our Results



Second case: all heads stay close to each other

qa

 q_b

 q_c

 q_d

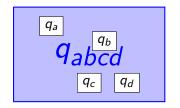
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

Our Mode

Our Results

Second case: all heads stay close to each other Combine into one head with larger state set, and reduce to the k = 1 case



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Group-Walking Automata

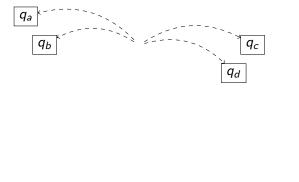
Ville Salo, Ilkka Törmä

Introduction

Our Model

Our Results

Third case: some heads travel far from others



Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction

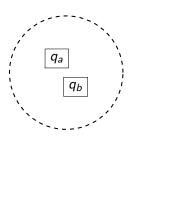
Our Mode

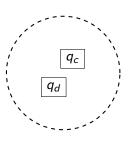
Our Results

Future Work

・ロト ・日下・・日下・ 日下・ 今日・

Third case: some heads travel far from others Apply induction hypothesis to every separated group: they never communicate again and travel a bounded distance





Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction Our Model Our Results Future Work

・ロト・「師・・言・・言・ 「母・・日・

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction

Our Mode

Our Results

Future Work

Corollary

If G is a torsion group, then the subshift of colorings $x : G \to \{0,1\}$ with $\#\{g \in G \mid x_g = 1\} \le 1$ is not in $\mathcal{S}(G)$

In particular, S(G) does not contain all intrinsically Π_1^0 subshifts

Future Work

We showed that S(G) = S(G, 4) if G is not a torsion group, and S(G) = S(G, 3) if G also has a decidable word problem

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction Our Model Our Results Future Work

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

Future Work

We showed that S(G) = S(G, 4) if G is not a torsion group, and S(G) = S(G, 3) if G also has a decidable word problem

Conjecture (4 Heads Better than 3)

There exists a non-torsion group G such that $S(G,3) \subsetneq S(G,4)$

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction Our Model Our Results Future Work

・ロト・西下・日下・日下・日下

Future Work

We showed that S(G) = S(G, 4) if G is not a torsion group, and S(G) = S(G, 3) if G also has a decidable word problem

Conjecture (4 Heads Better than 3)

There exists a non-torsion group G such that $S(G,3) \subsetneq S(G,4)$

Conjecture (Infinite Hierarchy)

There exists a torsion group G such that the hierarchy $S(G, k)_{k \ge 1}$ is infinite

Group-Walking Automata

Ville Salo, Ilkka Törmä

Introduction Our Model Our Results Future Work

うせん 同一 ふぼう ふぼう ふむ

The End

Group-Walking Automata

Ville Salo, <u>Ilkka Törmä</u>

ntroduction

Our Mode

Our Results

Future Work

Thank you!