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@ In a linear continuous-time dynamical system x = Ax, if
x : R — R™ and A is a real n x n matrix with all eigenvalues
distinct and having negative real parts, x(t) — 0 exponentially
fast as t — oo.

@ The same phenomenon can be observed in nonlinear system
x = f(x) (where f : R™ — R™) in a vicinity of hyperbolic fixed
point, as long as the Jacobian matrix of f evaluated at the

fixed point has only distinct eigenvalues with negative real
parts.

@ Discrete dynamical systems exhibit similar behaviour.
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If eigenvalues are degenerate (repeated), the convergence is
linear-exponential. Example:

[ =] 0] @

is defined by a matrix which has degenerate (double) eigenvalue %
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Can we have this in cellular automata?

We will consider 3-state nearest-neighbour CA obtained from
elementary binary CA by “lifting” them to 3-states. Let

g:{0,1}% — {0,1} be a local function of elementary CA satisfying
9(0,0,0) =0, g(1,1,1) =1, and let f,: {0,1,2}> — {0,1,2} be

defined by
g(xy, 2, x3), x1,x2,x3 € {0,1}
29 ﬂaﬂaﬂ ) x1,T2,T3 € 0,2
folar, g, 23) = (2 2 2) {0,2}
g1 —1,mo —Lxzz3 — 1)+ 1, z, 29,23 € {1,2}
T9, otherwise.
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Rule 140

One of the most interesting cases is f, defined by g being the
elementary CA rule 140, given by

g(x1, 22, 23) = T3 — T122 + T 12273

for x1, 29,23 € {0,1}. Rule f4 has the following spatio-temporal
pattern:
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Block evolution operator

Let B be the set off all finite blocks (words). A block evolution
operator corresponding to f is a mapping f : B +— B defined as
follows. Let a = apaq ...a,—1 € B where n > 3. Then

f(a) = {f(ai,air1,... 7ai+2)}?;03'

Example: for 3-state rule 140,
£4(202112011110210201) = 120100002,
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Preimages

A given block b has typically more than one preimage under f.
Let the density polynomial associated with a string b = b1bs ... b,
be defined as

Uy (p, g,7) = pHoP)g#r )y #2(b), (3)

where #;(b) is the number of occurrences of symbol i in b. If A is
a set of binary strings, we define density polynomial associated
with A as

AP gr) =D Talp,q,r (4)

acA
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Preimages

One can show that if one starts with a bi-infinite string of symbols
drawn from Bernoulli distribution where probabilities of 0,1 and 2
are, respectively, p,q and r, then the expected fraction of sites in
state k after n iterations of rule f is given by

lIlf‘"(k) (pa q, T)

This quantity will be called density of symbols k after n iterations

of f.
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Preimages of 1 for rule 140

In order to find a “closed form” expression for the density, we need
to describe the structure of preimage sets f =" (k). These sets grow
very quickly. For example, for rule 140, f=%(1) has 6048 elements.
Some of them:

000010000
000010001
000010002
000010010
000010011
000010012
000010020
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Preimages of 1 for rule 140

The set f#(1) can be described by FSM:
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General FSM

In general, the set £7"(1) can be described by
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Density polynomial for r # ¢

Using the FSM, one can construct density polynomial,

pa* (—pr + pg + ¢%) (g\)"
M(p+r)(g—r)
gr (—=p*r + p*q + pg® — 2pgr + 1% — ¢*r) (rA)"
i X p+a)a—7)
q (0° + g+ 2p%r + pr® +3pgr + 1% + 12 + ¢*r) A"
Ap+r)(p+4q)

where we used A =p+q + .

\Ilf*”(l) (p7 q, T) =

_l’_

)
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Degenerate case, r = g

pg*(n +1) (gN)"
A2 (q+p)
¢* (2p® +4p*q+ pg® — 2¢°) (g\)"
(q+p)* N2
(P 4+ 3p%q +4pg® + 3¢%) gA™"
A(g+p)°
When p=1,g=1and r =1, then W¢_n(;y(1,1,1) counts the

number of preimages of 1. This yields a sequence exhibiting
linear-exponential growth,

\Ilf*"(l) (p7 q, q) =

il

n 7 11
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@ What is the meaning of the degeneracy?

@ Does it mean that dynamics of rule 140 (or other rules) can
be effectively reduced to a finite-dimensional system of
difference equations?

@ Does it mean that local structure approximation becomes
exact at some level for rule 1407 Or for other rules?
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