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The Hard Core Model

The Hard Core Model/Independent Sets/Golden Mean Subshift

Definition (Hard Core)

Let L be a graph with the hop count metric. The set of configurations X L in
{0, 1}L with the restriction that no two nearest neighbors both carry 1’s is the
Hard Core Model on L.

On Z2 lattice Hard Squares:
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(Lattice lines horizontal/vertical, only 1’s rendered, each diamond has 0’s at corners.
On the hexagonal & triangular lattice it is the Hard Hexagon Model etc.)
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Dynamics and Regimes

Dynamics and Regimes

Generating PCA, p ∈ (0, 1), maps between sublattices. On Z2 simply

0otherwise,,w.p. p

p ≈ 1, the low temperature/high density regime: a packing model. As p ↑ 1,
on some graphs (like the square, hexagonal and triangular lattices) there is a
phase transition in the distribution of the 1’s. On others like the Kagomé
lattice the model is non-critical with positive residual entropy ([E1]).

p ≈ 1/2, the high temperature/entropic regime. Counting the configurations
and solving correlations are central problems.

Definition (Topological entropy)

htop
X ′ = lim

n→∞

1
n

ln
∣

∣

{

x |An | x ∈ X ′
}
∣

∣ = sup
µ∈M

hµ,

|An| = n escapes compact sets. In the set of invariant measures M, a
maximizing µ is a measure of maximal entropy (mme).
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Dynamics and Regimes

Results in the entropic regime

• 1-d model is solvable using transfer matrices. Analyzable on Cayley
trees (Rozikov&Suhov, Brightwell&Winkler etc.).

• On planar and higher dimensional graphs/lattices little is known
rigorously about the entropy except on the triangular lattice where its
exact value is known (Baxter, -80). For the uniqueness of the mme there
is the Dobrushin-Shlosman -criterion (-85).

• Numerical estimates of very high accuracy exist for the entropy on
square, hexagonal and triangular lattices (Baxter, -99, Milosevic et. al.,
-89) using transfer matrix calculations. They yield little insight on the
typical Hard Core configurations. For other numerical approximation
approaches see the article references in the Proceedings.

• We will establish a general method to obtain
1. lower bounds to entropy on k -partite graphs together with
2. information on the measure of maximal entropy.
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Filling in

Filling in for the entropy

Let h(e)
µ be the marginal a measure of maximal entropy on the even sublattice

and Ne an all-zero 2 × 2 neighborhood there. Then

Proposition

The topological entropy of the Hard Core Model on a lattice with a two-way
sublattice split is given by

htop =
1
2

{

h(e)
µ + P (Ne) ln 2

}

.

Idea of the proof: 1. assign the marginal of a measure of maximal entropy to
the even sublattice thereby contributing h(e)

µ /2 to the entropy. 2. fill in the
non-blocked sites on the odd sublattice optimally: use Bernoulli(1/2).

Procedure for entropy lower bound:

Replace the unknown h(e)
µ by hν with a known distribution ν that allows

explicit computation of P (Ne) . Then optimize the parameter(s) of ν.
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Filling in

The procedure can be extended from Z2 to
k -partite graphs. E.g. in the triangular
lattice the sequential fill-in takes place in
the order ◦ → • →△ as follows (starting
from empty lattice):

• Fill-in the ◦-sublattice with 1’s
according to B(p).

• On the sites on the •-sublattice that
are not blocked by some ◦-sublattice
1, fill-in with B(q).

• If the center site △ is not blocked by
the entries in the ◦/•-sublattices, fill it
in with B(1/2).

• Add up the conditional entropies:

1
3

{

h(◦) + h(•|◦) + h(△ |◦, •)
}

c c

c c
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Triangular and Z2M lattice
neighborhoods.
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Lower bounds

Theorem (First lower bounds)

The topological entropy of the Hard Core model is bounded from below on
the square (n = 4), hexagonal (n = 3), triangular (m = 3), Kagomé (m = 2)
and Z2M lattices by

hZ2/H(p) =
1
2

{

hB(p) + (1 − p)n ln 2
}

,

hT/K(p, q) =
1
3

{

hB(p) + (1 − p)m[ hB(q) + [1 − (1 − p)q]m ln 2 ]
}

,

and

hZ2M(p, q, r) =
1
4

{

hB(p)+(1 − p)2
[

hB(q) + [1 − (1 − p)q]4 hB(r)

+ (1 − p)2(1 − q)2[1 − (1 − (1 − p)q)2r
]2 ln 2

]}

,

where p, q and r ∈ (0, 1). Here hB(t) = −t ln t − (1 − t) ln (1 − t).
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Optimization

Optimization, first round

For lower bounds compute

max
p∈(0,1)

hZ2/H(p) , max
p,q∈(0,1)

hT/K(p, q) and max
p,q,r∈(0,1)

hZ2M(p, q, r).

L max hL sublattice densities best estimate in literature

Z2 0.3924 (0.1702, 0.2370) 0.4074951 (0.2266)[MSS],[B2]

H 0.4279 (0.2202, 0.2371) 0.4360 (0.2424)[B2]

T 0.3253 (0.1457, 0.1559, 0.1517) 0.3332427 (0.1624)[B2]

K 0.3826 (0.1944, 0.1948, 0.1866)

Z2M 0.2858 (0.119, 0.127, 0.130, 0.126)

Parameters p, q and r can be coupled in such a way that the sublattice
densities equal. Resulting optimal entropy bounds decrease very slightly.
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Densities

Density bounds

Somewhat loose but rigorous bounds for the densities can be derived for the
cases involved. For example in the square lattice case where the uniqueness
of the measure of maximal entropy guarantees identical sublattice densities
we have

Proposition

In the square lattice case the density of 1’s at the maximum entropy is a.s. in
the interval (0.21367, 0.25806).

The upper bound is exactly 8/31 and the lower one utilizes the entropy
estimate above.
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Higher order blocks

Higher order blocks on hexagonal and triangular lattice

• For improved lower bounds one can use
e.g. extended Bernoulli blocks.

• Let B(p), p = (p0, p1, p2, p3), be the
Bernoulli distribution on circle 3-hexes with
the probability that the 3-hex has exactly k
1-tiles in it in a given orientation is pk (so
p0 + 3p1 + 3p2 + p3 = 1). Its entropy is

h(3)
B (p) =

−p0 ln p0 − 3p1 ln p1 − 3p2 ln p2 − p3 ln p3.

The dot sublattice updates have to account
for the three dot locations on the right.

• Triangular and Kagomé lattices: in the
sequence ◦ → • →△ the circle 3-hexes first
update the dots and then the remaining
unforced triangles are updated by B(1/2).

Neighboring circle 3-hexes on
the hexagonal and triangular

lattices.
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Higher order blocks

Theorem (3-hexes)

Let a(p) = p0 + 2p1 + p2. For the hexagonal lattice the Hard Core entropy is
bounded from below by

h(3)
H (p) =

1
6

{

h(3)
B (p) +

[

p0 + 2a(p)3
]

ln 2
}

,

and for the triangular lattice a corresponding bound is

h(3)
T (p, q) =

1
9

{

h(3)
B (p)+

[

p0 + 2a(p)3
]

hB(q)

+ 3 [p1 + p0(1 − q)] a(p)3(2 − q)2 ln 2
}

,

where pi , q ∈ (0, 1).

Kagomé lattice can be treated analogously to the triangular case.
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Optimal 3-hexes

Optimal 3-hexes

Some improvement in the entropy bound and the densities close in...

L max hL (p0, p1, p2, p3), q sublattice densities

H 0.4304 (0.504, 0.110, 0.048, 0.021) (0.2276, 0.2376)

T 0.3265 (0.64, 0.092, 0,025, 0.010), 0.25 (0.153, 0.155, 0.151)
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Higher order blocks on Z2

Higher order blocks on Z2

• The blocks are chosen to be n × n
diamonds.

• By the uniqueness of the mme
(DS-criterion, Radulescu-Styer, -87) we can
assume rotation and reflection invariance
for the block probabilities. This reduces the
number of optimized variables by factor at
most 8.

• There is a further reduction of the number
of variables due to “dummy sites” within
blocks. On the right the values at the even
sites x , y and z force no further odd sites.
Hence the block together with seven other
3 × 3 -blocks will have exactly the same
probability. This reduction compounds the
symmetry reduction above.

1

1 0

1

1

x
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z

1

Dummies in a 3 × 3 diamond:
x , y and z values are irrelevant.

Hard Core entropy: lower bounds Kari Eloranta



Introduction Entropy computation Refinements Summary

Comparison

Comparison for higher order blocks on Z2

First few optimizations done on a desktop & Mathematica:

Block size max hZ2 sublattice densities reduced/init. variables

1 × 1 0.392421 (0.1702, 0.2370) 1

2 × 2 0.39877 (0.1993, 0.2254) 5/15

3 × 3 0.4014 (0.2073, 0.2254) 46/511

Larger blocks with specialized code. The dummy reduction will be highly
significant: e.g. in the next size 4 × 4 the block count shrinks down to about
1/66th (from 65.535 to 991 free variables).
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Comparison

• 3 × 3 block occupation
probabilities from optimal
Bernoulli blocks of dimension
3 × 3 (�), 2 × 2 (�), 1 × 1 (⋆).
k ∈ {0, 1, . . . , 9} is the
number of 1’s in the block.

• All distributions have about
the same mean k/9 ≈ 0.22.

• The true 3 × 3 -block
distribution (�) has heavier
tail indicating longer range
order.

0 2 4 6 8 10
1 + k
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Dominant blocks

Dominant blocks

• The dominant 3 × 3 -blocks and their
probabilities (multiplicities accounted
these probabilities sum to about 2/3).
At each density level a very small
number of blocks carry almost all of
the probability mass.

• The fine structure of the optimal
blocks as it unfolds in larger block
sizes: next denser blocks are "grown”
by adding new 1’s contiguously to the
1’s existing in a dominant lighter block
of the same size.
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Dominant blocks

Monotonicity

Let Bi , i = 1, 2 be n × n-blocks and denote their subsets of 1’s by B(1)
i . There

is a partial order on the Bi -blocks via B(1)
i using the set inclusion. Then

Theorem

Let the blocks Bi , i = 1, 2 have optimal lower bound probabilities pi . If
B(1)

1 ⊂ B(2)
2 then p1 ≥ p2. If B(1)

2 \ B(1)
1 contains only weak sites with respect to

B(1)
1 then p1 = p2, otherwise p1 > p2.

Intuitively “one should favor even blocks which leave more choice to the odd
lattice, otherwise weight uniformly”.
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Summary

• An alternative method for estimating the entropy in various k-partite
graph/lattice set-ups in any dimension. Usefullness beyond Hard Core
depends on the computability of conditional probabilities/entropies.

• Numerically not the most efficient but gives explicit block probabilities
and thereby insight into the typical configurations (support of mme)

• Depends on/can utilize efficient optimization algorithms.

• The tail behavior of the block probability distributions agrees with the
existence of long range order in Z2 Hard Core. Correlation estimates etc.
can be computed from the block probabilities.
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Rest

[E1] Eloranta, K.: Dense packing on uniform lattices, J. of Stat. Phys., 130,
pp. 741-55, 2008, arXiv:0907.4247 [math-ph].

[E2] Eloranta, K.: Hard Core via PCA: Entropy Bounds, AUTOMATA 2015
(Ed. J. Kari), LNCS 9099, pp. 85–98, 2015, arXiv:0907.4035 [math.PR].

www.math.aalto.fi/∼kve/research.html.en

Thank you!
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