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Graph dynamical systems/Automata Networks/Finite dynamical systems

t = 0

=⇒

t = 1
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t = 2

I Constituents:

A network

Vertices with associated states (Boolean case: 0 or 1)

A vertex function of the states of self + neighbors govern local state evolution

An update scheme determines the manner in which vertex states are updated
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Phase space & limit sets (of deterministic systems)

I Phase space:
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I Long-term behavior and system characteristics:

Attractors/limit cycles

Fixed points

Transient length
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Threshold systems

Let Tv be the threshold associated with vertex v .

Let xv ∈ {0, 1} be the state of vertex v .

Let n[v ] be the closed neighborhood of v (i.e., including v).

fv
(
n[v ]

)
=

{
1,

∑
w∈n[v ] xw ≥ Tv ,

0, otherwise.
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T = 2
f1(x1, x2, x4) = 0 while,
f2(x1, x2, x3) = 1.
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Update schemes
Parallel: all vertices are updated simultaneously. For the 4-cycle network ...
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Update schemes (contd.)

Block-sequential systems:

The vertex set is partitioned into blocks B1,B2, . . . ,Bk .

The blocks are updated sequentially.

Vertices within blocks are updated synchronously.

B1

B2

B3

B4

If |Bi | = 1 for all i we get a sequential
system

With only one block we get a
synchronous system
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Limit cycles in block sequential threshold systems

1 2 3 4 nBlock size

1 1 1 ¸2 ? ? 2
Max limit
set size

Sequential Parallel

[Goles 1981]
[E.g., Goles 1981, 
Marathe 2001] [M 2012]

This talk

Conjecture

The maximal periodic orbit size of block sequential threshold systems is 2.
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Limit cycles in block sequential threshold systems (ctd.)

I News bulletin:

Goles believes conjecture is false (2013)

An “anonymous reviewer” sees a counterexample by Goles and Montealegre (early 2014).

Reviewer finds that they consider majority systems without center vertex included and
remarks this as a comment (spring 2014).

Goles and Montealgre extends their example and puts the final nail in the conjecture coffin:
the conjecture is not just wrong, it is horribly wrong (late spring 2014).

Block-sequential systems can have arbitrarily long limit cycles. [Goles & Montealegre, 2014]

E. Goles, P. Montealegre / Theoretical Computer Science 559 (2014) 3–19 11

Fig. 7. Clause Ci = (xi1 ∨ xi2 ∨ xi3 ). In the figure qi = pi + 1 and k = pn + 2, where pi is the i-th prime. Gray vertices represent active ones, and the numbers 
in the vertices are the value of the vertex in the updating scheme. Vertices without number can be updated in an arbitrary order.

Fig. 8. A ladder of length 4 for the closed majority rule.

be easily modified as seen in Fig. 8. The remainder arguments follows as the non-closed case, which disproves the conjecture 
proposed in [13], since there are closed threshold automata networks that exhibit limit cycles with periods greater that 2. 
Actually, following the arguments of the non-closed case, we conclude that closed threshold automata networks can exhibit 
super-polynomial limit cycles.

Notice that in this case, blocks of size 4 are required. This complements the result of [13], where it is shown that closed 
threshold automata networks and block sequential updating schemes with maximum blocks of size 3 only exhibit fixed 
points.

5. AND–OR automata networks

Let us consider the automata network A = (G, {0, 1}, ( f i : i ∈ V )) such that the local function is the And rule:

Andi(x) =
{

1 if ∀ j ∈ N(i)x j = 1
0 if ∃ j ∈ N(i)x j = 0

Threshold function: closed majority rule (T2).
Vertex labels give block ID.
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Our results

Can we impose constraints on the network structure so that the block sequential system has
only fixed points?

We provide a sufficient condition based on the potential function method
[Barrett et al, 2006].

We show that several well-known graphs satisfy this condition.

This extends results of [Mortveit, 2012] where it was shown that systems with block size at
most 3 have only fixed points.
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The potential function method

Introduced by [Barrett et al, 2006] to show that sequential threshold systems have only
fixed points

Notation: Recall that Tv is the threshold associated with v , xv ∈ {0, 1} is its state, and
n[v ] be the closed neighborhood (i.e., including v).

Assign potentials to vertices & edges.

Definition (Potential functions)

Vertex potential: P(x , v) =

{
Tv , xv = 1

deg(v)− Tv + 2, xv = 0 .

The edge potential for e = {v , v ′}: P(x , e) =

{
1, xv 6= xv′

0, otherwise.

The system potential function for state x is defined as

P(x) =
∑

v∈V (X )

P(x , v) +
∑

e∈E [X ]

P(x , e) .
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The potential function method (contd.)

For the sequential threshold systems: [Barrett et al, 2006]

1 The system potential function P(x) ≥ 0 by definition.

2 The system potential strictly decreases whenever a vertex makes a transition from 0 −→ 1
or 1 −→ 0.

3 (1) and (2) imply sequential threshold systems have only fixed points as limit cycles.

4 This also implies that the transient length is at most
⌊
m+n+1

2

⌋
.
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Block-sequential systems:

B1

B2

B3

B4

The block-sequential map F : {0, 1}n −→ {0, 1}n is defined as F = FBm ◦ FBm−1
◦ · · · ◦ FB1

.
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Sufficient condition for block structure

Given block B, let B′ be any induced subgraph. Let x be any assignment of 0s and 1s to
vertices of B′.

Let ΛB′ (x) be the set of edges in B′ with their end points having the same state.

The phase space has only fixed points if for every B, the following is satisfied:

for all B′ ⊆ B : |E [B′]| − |V [B′]| − 2|Λv (x)| < 0

In this example, |E [B′]| = 5, |V [B′]| = 5, and |ΛB′ (x)| = 2.
Note that the condition is independent of the interconnections between the blocks.
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Some graph classes which satisfy the condition

1 Trees

2 Odd cycles

3 Complete graph

4 Wheel graph with odd cycle

Examples which do not satisfy the condition:

T = 2

(a)

2

3

(b)
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Examples

Trees

Every induced subgraph B′ is a forest.

Since every component is independent of one another, we can assume without loss of
generality that B′ is a tree.

Then, since |E [B′]| = |V [B′]| − 1, it follows that |E [B′]| − |V [B′]| − 2|Λv (x)| < 0.

Odd cycles

Every induced subgraph B′ is either a forest or odd cycle (graph itself).

Forests were covered in the previous example. So let us assume that B′ is the odd cycle.

Then, since |E [B′]| = |V [B′]|, and by pigeon-hole principle, there exists at least one edge
with end points in the same state, |E [B′]| − |V [B′]| − 2|Λv (x)| < 0.
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Cut-vertex-free-subgraph decomposition

Cut-vertex-free-subgraph decomposition corresponds to a(n edge) partition of the graph,
where each part induces a maximal cut-vertex free subgraph.

Suppose a block has a cut-vertex-free-subgraph decomposition such that each subgraph
satisfies the sufficient condition, then, the block also satisfies the condition.

S1

S2

S3
S4

S5

S6

S7

S8

S9
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Outline of proof for sufficient condition

Let x ′ = FB(x), i.e., x ′ is the configuration obtained from x after updating block B.

Lemma

If B satisfies |E [B′]| − |V [B′]| − 2ΛB′ (y) < 0, for all induced subgraphs B′ and configurations
y , then, P(x ′) < P(x).

Proof.

Let B(x , x ′) denote the set of vertices in B such that xv 6= x ′v .

Pv (x) = P(x , v) +
∑

e∈Ev [X ] P(x , e). ∆Pv = Pv (x ′)− Pv (x) is the change in potential at
vertex v .

It can be shown that P(x ′)− P(x) =
∑

v∈B(x,x′) ∆Pv , i.e., the potential difference

depends only on the nodes of B(x , x ′).

Let γv denote the number of neighbors of v in B(x , x ′) which have the same state as v in
x (and therefore, in x ′). We show that ∆Pv ≤ degB(x,x′)(v)− 2γv − 2.
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Questions and Acknowledgments

Is the result tight? Are there more graph classes which satisfy this condition?

How does block inter-connectivity impact the conclusion?

Are there better or more interesting results for bithreshold systems?
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