Effect of Graph Structure on the Limit Sets of Threshold Dynamical Systems

Henning S. Mortveit

with

Abhijin Adiga, Chris J. Kuhlman, and Sichao Wu

Department of Mathematics & Network Dynamics and Simulation Science Laboratory, VBI Virginia Tech

Automata 2015, Turku Finland, June 8-10, 2015

Graph dynamical systems/Automata Networks/Finite dynamical systems

- ► Constituents:
 - A network
 - Vertices with associated states (Boolean case: 0 or 1)
 - A vertex function of the states of self + neighbors govern local state evolution
 - An update scheme determines the manner in which vertex states are updated

Phase space & limit sets (of deterministic systems)

▶ Phase space:

- ► Long-term behavior and system characteristics:
 - Attractors/limit cycles
 - Fixed points
 - Transient length

Threshold systems

- Let T_v be the threshold associated with vertex v.
- Let $x_v \in \{0, 1\}$ be the state of vertex v.
- Let n[v] be the closed neighborhood of v (i.e., including v).

$$f_{v}(n[v]) = \begin{cases} 1, & \sum_{w \in n[v]} x_{w} \ge T_{v}, \\ 0, & \text{otherwise.} \end{cases}$$

 $f_1(x_1, x_2, x_4) = 0$ while, $f_2(x_1, x_2, x_3) = 1.$

Update schemes

Parallel: all vertices are updated simultaneously. For the 4-cycle network ...

Sequential: vertices updated in a specified order. Here: (1, 2, 3, 4).

Update schemes (contd.)

Block-sequential systems:

- The vertex set is partitioned into blocks B_1, B_2, \ldots, B_k .
- The blocks are updated sequentially.
- Vertices within blocks are updated synchronously.

- If $|B_i| = 1$ for all *i* we get a sequential system
- With only one block we get a synchronous system

Conjecture

The maximal periodic orbit size of block sequential threshold systems is 2.

- ► News bulletin:
 - Goles believes conjecture is false (2013)

- ► News bulletin:
 - Goles believes conjecture is false (2013)
 - An "anonymous reviewer" sees a counterexample by Goles and Montealegre (early 2014).

- ► News bulletin:
 - Goles believes conjecture is false (2013)
 - An "anonymous reviewer" sees a counterexample by Goles and Montealegre (early 2014).
 - Reviewer finds that they consider majority systems without center vertex included and remarks this as a comment (spring 2014).

- ► News bulletin:
 - Goles believes conjecture is false (2013)
 - An "anonymous reviewer" sees a counterexample by Goles and Montealegre (early 2014).
 - Reviewer finds that they consider majority systems without center vertex included and remarks this as a comment (spring 2014).
 - Goles and Montealgre extends their example and puts the final nail in the conjecture coffin: the conjecture is not just wrong, it is *horribly* wrong (late spring 2014).

- ► News bulletin:
 - Goles believes conjecture is false (2013)
 - An "anonymous reviewer" sees a counterexample by Goles and Montealegre (early 2014).
 - Reviewer finds that they consider majority systems without center vertex included and remarks this as a comment (spring 2014).
 - Goles and Montealgre extends their example and puts the final nail in the conjecture coffin: the conjecture is not just wrong, it is *horribly* wrong (late spring 2014).
 - Block-sequential systems can have arbitrarily long limit cycles. [Goles & Montealegre, 2014]

- ► News bulletin:
 - Goles believes conjecture is false (2013)
 - An "anonymous reviewer" sees a counterexample by Goles and Montealegre (early 2014).
 - Reviewer finds that they consider majority systems without center vertex included and remarks this as a comment (spring 2014).
 - Goles and Montealgre extends their example and puts the final nail in the conjecture coffin: the conjecture is not just wrong, it is *horribly* wrong (late spring 2014).
 - Block-sequential systems can have arbitrarily long limit cycles. [Goles & Montealegre, 2014]

Threshold function: closed majority rule (T_2). Vertex labels give block ID.

Our results

Can we impose constraints on the network structure so that the block sequential system has only fixed points?

- We provide a sufficient condition based on the potential function method [Barrett et al, 2006].
- We show that several well-known graphs satisfy this condition.
- This extends results of [Mortveit, 2012] where it was shown that systems with block size at most 3 have only fixed points.

The potential function method

- Introduced by [Barrett et al, 2006] to show that sequential threshold systems have only fixed points
- Notation: Recall that T_v is the threshold associated with $v, x_v \in \{0, 1\}$ is its state, and n[v] be the closed neighborhood (i.e., including v).
- Assign potentials to vertices & edges.

Definition (Potential functions)

Vertex potential:
$$P(x, v) = \begin{cases} T_v, & x_v = 1\\ \deg(v) - T_v + 2, & x_v = 0. \end{cases}$$

The edge potential for $e = \{v, v'\}$: $P(x, e) = \begin{cases} 1, & x_v \neq x_{v'}\\ 0, & \text{otherwise.} \end{cases}$

The system potential function for state x is defined as

$$P(x) = \sum_{v \in V(X)} P(x,v) + \sum_{e \in E[X]} P(x,e).$$

The potential function method (contd.)

For the sequential threshold systems: [Barrett et al, 2006]

- **The system potential function** $P(x) \ge 0$ by definition.
- ${\tt 2}$ The system potential strictly decreases whenever a vertex makes a transition from 0 \longrightarrow 1 or 1 \longrightarrow 0.
- 3 (1) and (2) imply sequential threshold systems have only fixed points as limit cycles.
- If This also implies that the transient length is at most $\lfloor \frac{m+n+1}{2} \rfloor$.

Block-sequential systems:

The block-sequential map $F: \{0,1\}^n \longrightarrow \{0,1\}^n$ is defined as $F = F_{B_m} \circ F_{B_{m-1}} \circ \cdots \circ F_{B_1}$.

Sufficient condition for block structure

- Given block B, let B' be any induced subgraph. Let x be any assignment of 0s and 1s to vertices of B'.
- Let $\Lambda_{B'}(x)$ be the set of edges in B' with their end points having the same state.
- The phase space has only fixed points if for every *B*, the following is satisfied:

for all $B' \subseteq B$: $|E[B']| - |V[B']| - 2|\Lambda_v(x)| < 0$

Sufficient condition for block structure

- Given block *B*, let *B'* be any induced subgraph. Let *x* be any assignment of 0s and 1s to vertices of *B'*.
- Let $\Lambda_{B'}(x)$ be the set of edges in B' with their end points having the same state.
- The phase space has only fixed points if for every *B*, the following is satisfied:

for all $B' \subseteq B$: $|E[B']| - |V[B']| - 2|\Lambda_v(x)| < 0$

In this example, |E[B']| = 5, |V[B']| = 5, and $|\Lambda_{B'}(x)| = 2$.

Sufficient condition for block structure

- Given block B, let B' be any induced subgraph. Let x be any assignment of 0s and 1s to vertices of B'.
- Let $\Lambda_{B'}(x)$ be the set of edges in B' with their end points having the same state.
- The phase space has only fixed points if for every *B*, the following is satisfied:

 $\text{for all }B'\subseteq B:\quad |E[B']|-|V[B']|-2|\Lambda_v(x)|<0$

In this example, |E[B']| = 5, |V[B']| = 5, and $|\Lambda_{B'}(x)| = 2$. Note that the condition is independent of the interconnections between the blocks. Some graph classes which satisfy the condition

- 1 Trees
- 2 Odd cycles
- 3 Complete graph
- 4 Wheel graph with odd cycle

Some graph classes which satisfy the condition

- 1 Trees
- 2 Odd cycles
- 3 Complete graph
- 4 Wheel graph with odd cycle

Examples which do not satisfy the condition:

Examples

Trees

- Every induced subgraph B' is a forest.
- Since every component is independent of one another, we can assume without loss of generality that B' is a tree.
- Then, since |E[B']| = |V[B']| 1, it follows that $|E[B']| |V[B']| 2|\Lambda_v(x)| < 0$.

Odd cycles

- Every induced subgraph B' is either a forest or odd cycle (graph itself).
- Forests were covered in the previous example. So let us assume that B' is the odd cycle.
- Then, since |E[B']| = |V[B']|, and by pigeon-hole principle, there exists at least one edge with end points in the same state, |E[B']| |V[B']| 2|Λ_ν(x)| < 0.</p>

A class of graph dynamical systems An elegant result Our results

Cut-vertex-free-subgraph decomposition

- Cut-vertex-free-subgraph decomposition corresponds to a(n edge) partition of the graph, where each part induces a maximal cut-vertex free subgraph.
- Suppose a block has a cut-vertex-free-subgraph decomposition such that each subgraph satisfies the sufficient condition, then, the block also satisfies the condition.

Outline of proof for sufficient condition

Let $x' = F_B(x)$, i.e., x' is the configuration obtained from x after updating block B.

Lemma

If B satisfies $|E[B']| - |V[B']| - 2\Lambda_{B'}(y) < 0$, for all induced subgraphs B' and configurations y, then, P(x') < P(x).

Proof.

- Let B(x, x') denote the set of vertices in B such that $x_v \neq x'_v$.
- $P_v(x) = P(x, v) + \sum_{e \in E_v[X]} P(x, e)$. $\Delta P_v = P_v(x') P_v(x)$ is the change in potential at vertex v.
- It can be shown that $P(x') P(x) = \sum_{v \in B(x,x')} \Delta P_v$, i.e., the potential difference depends only on the nodes of B(x,x').
- Let γ_v denote the number of neighbors of v in B(x, x') which have the same state as v in x (and therefore, in x'). We show that $\Delta P_v \leq \deg_{B(x,x')}(v) 2\gamma_v 2$.

Questions and Acknowledgments

- Is the result tight? Are there more graph classes which satisfy this condition?
- How does block inter-connectivity impact the conclusion?
- Are there better or more interesting results for bithreshold systems?

Acknowledgments: We thank our external collaborators and members of the Network Dynamics and Simulation Science Laboratory (NDSSL) for their suggestions and comments. This work has been partially supported by DTRA Grant HDTRA1-11-1-0016.