

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Dynamic Synthesis and Analysis of Maximum Length Linear and Nonlinear Cellular Automata

Abhrajit Sengupta, Shamit Ghosh and Dipanwita Roy Chowdhury

Indian Institute of Technology, Kharagpur

June 10, 2015

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

- Contribution
- 2 Dynamic Construction of Maximum Length LHCA
- 3 Nonlinearity Injection

- Analysis
 - Nonlinearity
 - Statistical Analysis

Introduction

- Dynamic Construction of Maximum Length LHCA
- Nonlinearity Injection
- Analysis
- Conclusion

- 1 Introduction
 - Contribution
 - Dynamic Construction of Maximum Length LHCA
 - 3 Nonlinearity Injection
- 4 Analysis
 - Nonlinearity
 - Statistical Analysis
- 5 Conclusion

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

- Random numbers are fundamental to many cryptographic applications
 - used in stream ciphers, key generators and nonces
 - ► an ideal concept
- Usually approximated by PRNG
- ► Traditionally LFSR and LHCA were used as PRNG
 - can be readily analyzed compromising security
- As a solution *nonlinearity* was introduced
 - suffers from low periodicity
- Current PRNGs using FSRs or CAs are hard to alter dynamically

Introduction Contribution

Introduction

- Dynamic Construction of Maximum Length LHCA
- Nonlinearity Injection
- Analysis
- Conclusion

Design of a readily alterable dynamic PRNG

Proof of nonlinearity and maximum length cycle

Analysis of nonlinearity and statistical properties

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

- Introduction
 - Contribution
- 2 Dynamic Construction of Maximum Length LHCA
 - Nonlinearity Injection
- 4 Analysis
 - Nonlinearity
 - Statistical Analysis
- 5 Conclusion

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

- In 1996, Cattel and Muzio presented a mapping between irreducible polynomial and LHCA
 - irreducible polynomial does not ensure maximum periodicity of LHCA
- There exists one-to-one correspondence between *primitive* polynomial and maximum-length LHCA
 - maps finding maximum-length LHCA to that of finding primitive polynomial
- However, checking of primitivity is too costly
 - requires factorization of $2^n 1$
 - requires checking primitive root of the defining polynomial, necessitating exponentiation

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Theorem 1

If $2^n - 1$ is a prime number (Mersenne Prime) then every degree n irreducible polynomial is also primitive

 Finding primitive polynomial changes to finding irreducible polynomial

• Work with polynomials of degree $n: 2^n - 1 \in \mathbb{P}$

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

- ▶ A polynomial $f(x) = \Sigma b_i \cdot x^i, 0 \le i \le n$ is represented as a bit-string $b_n, b_{n-1}, \cdots, b_0$
- \blacktriangleright Random patterns of (n-1) bits with 1 added at both ends are produced
 - MSB is 1 as f(x) is monic
 - \blacktriangleright LSB also should be 1, otherwise x will be a trivial factor of f(x)
- Finally, f(x) is subjected to Rabin's irreducibility test

▷ Rabin's Test

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Algorithm 1: Generation of maximum length LHCA

Input: An initial seed r

Output: A maximum length LHCA rule Vector

- 1: $s \leftarrow \text{RAND}(r)$
- 2: $\mathcal{S} \leftarrow 1||s||1$
- 3: while IsIrreducible(S) = FALSE do
- 4: $s \leftarrow \text{Rand}(s)$
- 5: $\mathcal{S} \leftarrow 1 ||s||1$
- 6: end while
- 7: $rule \leftarrow \text{SythesizeCA}(S)$
- 8: return rule

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Theorem 2

The expected running time of Algorithm 1 is $\mathcal{O}(n)$.

- ▶ Number of irreducible polynomials of degree n over \mathbb{F}_q $I_n = \frac{1}{n} \sum_{k|n} \mu(k) q^{n/k}, \quad \mu \to \text{Möbius function}$
- \blacktriangleright Follows that $q^n-2q^{n/2} \leq n I_n \leq q^n$
- A fraction very close to $\frac{1}{n}$ are irreducible
- On average Algorithm 1 produces an irreducible polynomial with n number of trials

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Table 1 : Synthesis of CA from a Primitive Polynomial

LHCA bits	Primitive Polynomial	CA rule
7	0xe5	0x12
31	debab241	63c44d9b
61	0x2c3b579be4a2eee1	0x25e9034de86d7fa
89	0x3db838f8e174ed136dd3515	0x1c39fd02bd393870f075167
127	0xd6f6033bd7f334f1a38b09020e145937	0x5320dc7cd47e7581f5e3846d0bd7840a

Table 2 : Computation Time of synthesis of 10,000 LHCA rules

# of cells	Time Consumed(second)	Throughput (rules/second)
31	8.364	1195.60
61	33.743	296.36
89	80.176	124.73
127	186.137	53.73

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

- Introduction
 - Contribution
- Dynamic Construction of Maximum Length LHCA
- 3 Nonlinearity Injection
- 4 Analysis
 - Nonlinearity
 - Statistical Analysis
- 5 Conclusion

- Introduction
- Dynamic Construction of Maximum Length LHCA
- Nonlinearity Injection
- Analysis
- Conclusion

- A maximum length LHCA is converted to a maximum length NHCA
- Nonlinear functions are injected into selected positions of the LHCA
- Maximum length property is ensured with additional boolean functions
- A term *shifting operation* is defined for this purpose

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Definition 1

The one cell shifting operation, denoted by $f_i \xrightarrow{P} f_{i\pm 1}$ moves a set of ANF monomials P from *i*-th cell of an NHCA to all the cells from (i-1) to (i+1)-th cell, according to the dependency of the affected cells upon the *i*-th cell. Each variables in P is changed by their previous state. Similarly, a k cell shifting is obtained by applying the one cell shifting operation for k times upon the initial NHCA and symbolized as $f_i \xrightarrow{P} f_{i\pm k}$.

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Algorithm 2: NHCA synthesis

Input: A maximum length LHCA with ruleset \mathcal{F}_L , A position j to inject non-linearity and the set of cells of the LHCA S

Output: A maximum length NHCA ruleset \mathcal{F}_{N}

1:
$$\mathcal{F}_N \leftarrow \mathcal{F}_L$$

2: Let $\mathcal{F}_N = \{f_{n-1}, \cdots, f_0\}$
3: $\mathcal{X} \subset \mathcal{S} : \forall x \in \mathcal{X}, x \notin \mathbf{N}(j)$
4: $P \leftarrow \mathbf{f}_{\mathbf{N}}(\mathcal{X})$
5: $f_j \leftarrow f_j \oplus P$

6: $(f_i \xrightarrow{P} f_{i+1})$

7: $f_j \leftarrow f_j \oplus P$ 8: return \mathcal{F}_N $\triangleright \text{ select a subset from } \mathcal{S}$ $\triangleright \mathbf{f_N} \text{ is non-linear function}$

Apply shifting operation

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

The maximum length property of the synthesized NHCA is established via following theorem.

Theorem 3

Algorithm 2 generates a maximum length NHCA.

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Table 3 : Maximum Length NHCA Synthesis from LHCA

Linear Rule		Nonlinear Rule	
$f_0 = s_1$		$f_0 = s_1$	
$f_1 = s_0 \oplus s_2$		$f_1=s_0\oplus s_2$	
$f_2 = s_1 \oplus s_2 \oplus s_3$		$f_2 = (s_0 \& s_4) \oplus (s_0 \& s_5) \oplus (s_0 \& s_6) \oplus$	
		$(s_2\&s_4)\oplus(s_2\&s_5)\oplus(s_2\&s_6)\oplus s_1\oplus s_2\oplus s_3$	
$f_3 = s_2 \oplus s_4$	\Rightarrow	$f_3=(s_1\&s_5)\oplus s_2\oplus s_4$	
$f_4 = s_3 \oplus s_5$		$f_4=(s_0\&s_4)\oplus(s_0\&s_5)\oplus(s_0\&s_6)\oplus$	
		$(s_2\&s_4)\oplus(s_2\&s_5)\oplus(s_2\&s_6)\oplus s_3\oplus s_5$	
$f_5 = s_4 \oplus s_5 \oplus s_6$		$f_5=s_4\oplus s_5\oplus s_6$	
$f_6 = s_5$		$f_6 = s_5$	

Analysis

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Contribution

Analysis

Nonlinearity

• Statistical Analysis

Analysis Nonlinearity

Figure 1 : Probability Density Function of Nonlinearity of a 17 bit NHCA

Analysis Statistical Analysis

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Table 4 : NIST Test Suite Result

Test Name	P-values		
	NHCA (127 bits)	NFSR (128 bits)	
ApproximateEntropy	0.596753	0.000000	
BlockFrequency	0.914133	1.000000	
CumulativeSums(Forward)	0.135160	0.000000	
CumulativeSums(Backward)	0.314951	0.000000	
FFT	0.234132	0.000000	
Frequency	0.171906	0.000000	
LinearComplexity	0.187039	0.000000	
LongestRun	0.914449	0.000000	
NonOverlappingTemplate	0.441900	0.000000	
OverlappingTemplate	0.219981	0.000000	
Rank	0.381395	0.039176	
Runs	0.194929	0.000000	
Serial	0.930595	0.000000	

Analysis Statistical Analysis

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Figure 2 : Pictorial Comparison of NHCA and NFSR

Conclusion

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

- Introduction
 - Contribution
- Dynamic Construction of Maximum Length LHCA
- 3 Nonlinearity Injection
- 4 Analysis
 - Nonlinearity
 - Statistical Analysis

Conclusion

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

 A scalable method for constructing maximum-length LHCA

 Nonlinearity is injected in LHCA retaining maximum periodicity

 Statistical results show suitability as a cryptographic primitive

Conclusion

Introduction

Dynamic Construction of Maximum Length LHCA

Nonlinearity Injection

Analysis

Conclusion

Thank You