# Recognition of <br> Linear-Slender Context-Free Languages <br> by Real Time One-Way Cellular Automata 

Véronique Terrier<br>GREYC - Université de Caen

## Introduction

Objective
To better understand the algorithmic capacity of cellular automata
We will show how one of the simplest types of cellular automata can simulate a restricted variant of context free languages.

## Context-free language

Basic notions

Context-free language (CFL)

$$
\begin{aligned}
& \left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}+\mathrm{m}} \mathrm{a}^{\mathrm{m}}: \mathrm{n} \geq 0, \mathrm{~m} \geq 0\right\} \\
& S \rightarrow X Y \\
& X \rightarrow a X b \mid \varepsilon \\
& Y \rightarrow b X a \mid \varepsilon
\end{aligned}
$$

Linear CFL

$$
\begin{aligned}
\mathrm{L}_{0} & =\left\{\mathrm{a}^{\mathrm{u}} \mathrm{wb}^{\mathrm{u}}: \mathrm{u}>0, \mathrm{w}=\varepsilon \text { or } \mathrm{w} \in \mathrm{~b}\{\mathrm{a}, \mathrm{~b}\}^{*} \mathrm{a}\right\} \\
S & \rightarrow a S b|a b T a b| a b \\
T & \rightarrow T a|T b| \varepsilon
\end{aligned}
$$

## Poly-slender and linear-slender CFL

The counting function of a language $L$ $\sharp_{n}(L)$ : the number of words in $L$ of length $n$
A language $L$ is

- $k$-poly-slender if $\sharp_{n}(L)$ is in $\mathcal{O}\left(n^{k}\right)$.
- linear-slender if $\sharp_{n}(L)$ is in $\mathcal{O}(n)$.

Examples
$\left\{a^{n} b^{n+m} a^{m}: n \geq 0, m \geq 0\right\}$ is a linear-slender CFL
$\sharp_{n}(L)= \begin{cases}0 & \text { if } n \text { is odd } \\ n / 2-1 & \text { if } n \text { is even }\end{cases}$
$\mathrm{L}_{0}=\left\{\mathrm{a}^{\mathrm{u}} \mathrm{wb}^{\mathrm{u}}: \mathrm{u}>0, \mathrm{w}=\varepsilon\right.$ or $\left.\mathrm{w} \in \mathrm{b}\{\mathrm{a}, \mathrm{b}\}^{*} \mathrm{a}\right\}$ is not a poly-slender CFL $\sharp_{n}\left(L_{0}\right) \sim 2^{n}$
$\left\{a^{n_{1}} b^{n_{2}} a^{n_{3}} b^{n_{4}} a^{n_{5}}: n_{1}+n_{3}+n_{5}=n_{2}+n_{4}\right\}$ is a 3-poly-slender CFL $\sharp_{n}(L) \sim n^{3}$

## Poly-slender and linear-slender CFL

## Characterization in terms of Deck Loops

k-Dyck Loop (lie, Rozenberg and Salomaa)
Given

- a Dick word on $\{[]\}:, \mathrm{z}_{1} \mathrm{z}_{2} \cdots \mathrm{z}_{2 \mathrm{k}}$
- some words $\mathrm{y}_{0}, \mathrm{y}_{1}, \cdots, \mathrm{y}_{2 \mathrm{k}}$ and $\mathrm{x}_{1}, \cdots, \mathrm{x}_{2 \mathrm{k}}$
- a map
$\mathrm{h}_{\mathrm{n}_{1}, \cdots, \mathrm{n}_{\mathrm{k}}}\left(\mathrm{y}_{0} \mathrm{z}_{1} \mathrm{y}_{1} \mathrm{z}_{2} \mathrm{y}_{2} \cdots \mathrm{z}_{2 \mathrm{k}} \mathrm{y}_{2 \mathrm{k}}\right)=\mathrm{y}_{0} \mathrm{x}_{1}^{\mathbf{e}_{1}} \mathrm{y}_{1} \mathrm{x}_{2}^{\mathbf{e}_{2}} \mathrm{y}_{2} \cdots \mathrm{x}_{2 \mathrm{k}}^{\mathbf{e}_{2 \mathrm{k}}} \mathrm{y}_{2 \mathrm{k}}$ where, if $z_{1}$ and $z_{r}$ are the i-th matching parenthesis then both exponents $e_{1}$ and $e_{r}$ are $n_{i}$.
A k-Dyck loop is

$$
\left\{\mathrm{h}_{\mathrm{n}_{1}, \cdots, \mathrm{n}_{\mathrm{k}}}\left(\mathrm{y}_{0} \mathrm{z}_{1} \mathrm{y}_{1} \mathrm{z}_{2} \mathrm{y}_{2} \cdots \mathrm{y}_{2 \mathrm{k}-1} \mathrm{z}_{2 \mathrm{k}} \mathrm{y}_{2 \mathrm{k}}\right): \mathrm{n}_{\mathrm{i}} \geq 0\right\}
$$

## Poly-slender and linear-slender CFL

## Characterization in terms of Deck Loops

Examples
$\left\{a^{n_{1}} b^{n_{1}+n_{2}} a^{n_{2}}: n_{1}, n_{2} \geq 0\right\}$ is a 2-Dyck loop with Deck word [][], $y_{0}=\cdots=y_{4}=\varepsilon$ and $x_{1}=x_{4}=a, x_{2}=x_{3}=b$
$\left\{a^{n_{1}} b^{n_{1}+n_{2}} a^{n_{2}+n_{3}} b^{n_{3}+n_{4}} a^{n_{4}}: n_{i} \geq 0\right\}$ is a 4-Dyck loop with Deck word [][][][], $\mathrm{y}_{\mathrm{i}}=\varepsilon$ and $\mathrm{x}_{1}=\mathrm{x}_{4}=\mathrm{x}_{5}=\mathrm{x}_{8}=\mathrm{a}, \mathrm{x}_{2}=\mathrm{x}_{3}=\mathrm{x}_{6}=\mathrm{x}_{7}=\mathrm{b}$ $\left\{a^{n_{1}+n_{2}} b^{n_{2}} a^{n_{3}} b^{n_{1}+n_{3}+n_{4}} a^{n_{4}}: n_{i} \geq 0\right\}$ is a 4-Dyck loop with Deck word [[][]][]

Theorem (llie, Rozenberg and Salomaa)
For any $k \geq 0$, a CFL is $k$-poly-slender if and only if it is a finite union of $(k+1)$-Dyck loops.

## Real time OCA

A real time OCA is specified by:

- an input alphabet $\Sigma$
- a finite set of states $S \quad(S \supset \Sigma)$
- a subset of accepting states $F$
- 
- a transition function $\delta: S \times S \rightarrow S$



## Real time OCA

A real time OCA is specified by:

- an input alphabet $\Sigma$
- a finite set of states $S \quad(S \supset \Sigma)$
- a subset of accepting states $F$ -
- a transition function $\delta: S \times S \rightarrow S$



## Real time OCA

A real time OCA is specified by:

- an input alphabet $\Sigma$
- 
- a finite set of states $S \quad(S \supset \Sigma)$
- a subset of accepting states $F$ -
- a transition function $\delta: S \times S \rightarrow S$



## Real time OCA

A real time OCA is specified by:

- an input alphabet $\Sigma$
- 
- a finite set of states $S \quad(S \supset \Sigma)$
- a subset of accepting states $F$ -
- a transition function $\delta: S \times S \rightarrow S$


A real time OCA is specified by:

- an input alphabet $\Sigma$
- 
- a finite set of states $S \quad(S \supset \Sigma)$
- a subset of accepting states $F$ -
- a transition function $\delta: S \times S \rightarrow S$
computation on the top

Result of the

## Real time OCA

Language recognition
The language accepted by a real time OCA
The set of all words whose computation ends in an accepting state


A main feature
The computation of a word contains the computation of all its factors.

Real time OCA
Recognition of
$\left\{a^{n} b^{n} c^{m} d^{m}: n \geq 0, m \geq 0\right\}=\left\{a^{n} b^{n}(c+d)^{+}: n \geq 0\right\} \cap\left\{(a+b)^{+} c^{m} d^{m}: m \geq 0\right\}$


The Čulík algorithm
Recognition of $\left\{a^{n} b^{n+m} d^{m}: n \geq 0, m \geq 0\right\}$


The Čulík algorithm
Recognition of $\left\{a^{n} b^{n+m} d^{m}: n \geq 0, m \geq 0\right\}$



## Real time OCA

A robust class

The real time OCA class

- is closed under boolean operations
- is not closed under morphism, concatenation
- contains all linear CFL

Characterization in terms of linear conjunctive grammar
A linear CF grammar broaden with a conjunctive operation \&
Theorem (Okhotin 2004)
A language $L$ is recognized in real time by an OCA if and only if
$L$ is generated by a linear conjunctive grammar.

## Relationship between CFL and real time OCA

CFL and real time OCA are incomparable
CFL do not contain real time OCA $\left\{a^{n} b^{n} c^{n}: n>0\right\}$ is a real time OCA language but not a CFL.

Real time OCA do not contain CFL
$\mathrm{L}_{0}=\left\{\mathrm{a}^{\mathrm{u}} \mathrm{wb}^{\mathrm{u}}: \mathrm{u}>0, \mathrm{w}=\varepsilon\right.$ or $\left.\mathrm{w} \in \mathrm{b}\{\mathrm{a}, \mathrm{b}\}^{*} \mathrm{a}\right\}$
$L_{0}$ is a linear CFL and so a real time OCA language.
$L_{0} L_{0}$ is a CFL but not a real time OCA language.
Real time OCA do not contain deterministic CFL (and even $\operatorname{LL}(1)$ languages) (Okhotin 2014)
$L_{1}=\left\{c^{m} \mathrm{ba}^{1_{1}} \mathrm{~b} \cdots \mathrm{a}^{1_{m-1}} \mathrm{~b}: \mathrm{m}>0, \mathrm{I}_{\mathrm{i}} \geq 0\right\}$
$\mathrm{L}_{2}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{bwd}^{\mathrm{n}}: \mathrm{n}>0, \mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
$\mathrm{L}_{1}$ and $\mathrm{L}_{2}$ are linear CFL and so real time OCA languages.
$\mathrm{L}_{1} \mathrm{~L}_{2}$ is a deterministic CFL (and even a $L L(1)$ language) but not a real time OCA language.

## Relationship between CFL and real time OCA



Question
What languages do they have in common?

## Poly-slender CFL and rt OCA language

## Conjecture

The poly-slender CFL are real time OCA languages.
Here we only prove the minimal statement:
Claim
The linear-slender CFL are real time OCA languages.
Recall that the linear-slender CFL correspond to the finite unions of 2-Dyck loops.
$\Rightarrow$ We have to show that the 2-Dyck loops are recognizable by real time OCA.

## Poly-slender CFL and rt OCA language

The real question: the closure under concatenation

## Theorem (Ginsburg and Spanier)

The family of poly-slender CFL is the smallest family which contains all finite languages and is closed under the following operations:

1. union
2. catenation
3. $(x, y)^{\star} L=\bigcup_{n \geq 0} x^{n} L y^{n}$ for any $x, y$ words

The real time OCA languages

- include all finite languages
- are closed under union and $\star$ operation
- are not closed under concatenation

But, the known witnesses for non-closure under concatenation are not languages inside the family of poly-slender CFL.

## 2-Dyck loops are real time OCA

Shapes of 2-Dyck loops

Case 1. The underlying Dyck word is [[]]

$$
\left\{y_{0} x_{1}^{n_{1}} y_{1} x_{2}^{n_{2}} y_{2} x_{3}^{n_{2}} y_{3} x_{4}^{n_{1}} y_{4}: n_{1}, n_{2} \geq 0\right\}
$$

Case 2. The underlying Dyck word is [][]

$$
\left\{y_{0} x_{1}^{n_{1}} y_{1} x_{2}^{n_{1}} y_{2} x_{3}^{n_{2}} y_{3} x_{4}^{n_{2}} y_{4}: n_{1}, n_{2} \geq 0\right\}
$$

In the following, we will deal with simplified version of 2-Dyck loops by setting $\mathrm{y}_{0}=\cdots=\mathrm{y}_{4}=\varepsilon$.
It does not change the essential arguments.

2-Dyck loops are real time OCA
Shapes of 2-Dyck loops
Case 1. The underlying Dyck word is [[]]
$\left\{\mathrm{y}_{0} \mathrm{x}_{1}^{\mathrm{n}_{1}} \mathrm{y}_{1} \mathrm{x}_{2}^{\mathrm{n}_{2}} \mathrm{y}_{2} \mathrm{x}_{3}^{\mathrm{n}_{2}} \mathrm{y}_{3} \mathrm{x}_{4}^{\mathrm{n}_{1}} \mathrm{y}_{4}: \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}$
Case 2. The underlying Dyck word is [][] $\left\{\mathrm{y}_{0} \mathrm{x}_{1}^{\mathrm{n}_{1}} \mathrm{y}_{1} \mathrm{x}_{2}^{\mathrm{n}_{1}} \mathrm{y}_{2} \mathrm{x}_{3}^{\mathrm{n}_{2}} \mathrm{y}_{3} \mathrm{x}_{4}^{\mathrm{n}_{2}} \mathrm{y}_{4}: \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}$

In the following, we will deal with simplified version of 2-Dyck loops by setting $\mathrm{y}_{0}=\cdots=\mathrm{y}_{4}=\varepsilon$.
It does not change the essential arguments.

Case 1. The underlying Dyck word is [[]]

$$
\left\{x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{2}} x_{4}^{n_{1}}: n_{1}, n_{2} \geq 0\right\}
$$

Case 2. The underlying Dyck word is [][]

$$
\left\{\mathrm{x}_{1}^{\mathrm{n}_{1}} x_{2}^{\mathrm{n}_{1}} x_{3}^{\mathrm{n}_{2}} \mathrm{x}_{4}^{\mathrm{n}_{2}}: n_{1}, n_{2} \geq 0\right\}
$$

## 2-Dyck loops are real time OCA

Case 1. The underlying Dyck word is [[]]

The corresponding Dyck loop is $\left\{\mathrm{x}_{1}^{\mathrm{n}_{1}} \mathrm{x}_{2}^{\mathrm{n}_{2}} x_{3}^{\mathrm{n}_{2}} \mathrm{x}_{4}^{\mathrm{n}_{1}}: \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}$. It is a linear CFL language and so it is a real time OCA language.

The closure under $\star$ operation $\left((x, y)^{\star} L=\bigcup_{n \geq 0} x^{n} L y^{n}\right)$ is here involved.

## 2-Dyck loops are real time OCA

Case 2. The underlying Dyck word is [][]
The corresponding Dyck loop is $\left\{\mathrm{x}_{1}^{\mathrm{n}_{1}} \mathrm{x}_{2}^{\mathrm{n}_{1}} \mathrm{x}_{3}^{\mathrm{n}_{2}} \mathrm{x}_{4}^{\mathrm{n}_{2}}: \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}$.
The closure under concatenation of 1-Dyck loops is now involved.
Case 2.a. $x_{1}$ and $x_{2}$ have the same primitive root (or $x_{3}$ and $x_{4}$ )
A degenerated case
$x_{1}=z^{r}, x_{2}=z^{s}$ for some $z, r, s$
$\left\{\mathrm{x}_{1}^{\mathrm{n}_{1}} \mathrm{x}_{2}^{\mathrm{n}_{1}} \mathrm{x}_{3}^{\mathrm{n}_{2}} \mathrm{x}_{4}^{\mathrm{n}_{2}}: \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}=\left\{\mathrm{z}^{(\mathrm{r}+\mathrm{s}) \mathrm{n}_{1}} \mathrm{x}_{3}^{\mathrm{n}_{2}} \mathrm{x}_{4}^{\mathrm{n}_{2}}: \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}$ is a linear CFL
Case 2.b. $x_{2}$ and $x_{3}$ do not have the same primitive root

## A type of marked concatenation

The Dyck loop is the intersection of two linear CFL

$$
\begin{aligned}
& \left\{\mathrm{x}_{1}^{\mathrm{n}_{1}} \mathrm{x}_{2}^{\mathrm{n}_{1}} \mathrm{x}_{3}^{\mathrm{n}_{2}} \mathrm{x}_{4}^{\mathrm{n}_{2}}: \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}= \\
& \quad\left\{\mathrm{x}_{1}^{\mathrm{n}_{1}} \mathrm{x}_{2}^{\mathrm{n}_{2}} x_{3}^{m} \mathrm{x}_{4}^{\mathrm{p}}: \mathrm{n}_{1}, \mathrm{~m}, \mathrm{p} \geq 0\right\} \cap\left\{\mathrm{x}_{1}^{\mathrm{m}} \mathrm{x}_{2}^{\mathrm{p}} \mathrm{x}_{3}^{\mathrm{n}_{2}} \mathrm{x}_{4}^{\mathrm{n}_{2}}: \mathrm{n}_{2}, \mathrm{~m}, \mathrm{p} \geq 0\right\}
\end{aligned}
$$

Case 2.c. $x_{2}$ and $x_{3}$ have the same primitive root but not $x_{1}, x_{2}$ and $\mathrm{x}_{3}, \mathrm{x}_{4}$
The critical case

$$
\left\{\mathrm{x}_{1}^{\mathrm{n}_{1}} x_{2}^{\mathrm{n}_{1}} \mathrm{n}_{3}^{\mathrm{n}_{2}} x_{4}^{\mathrm{n}_{2}}: \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}=\left\{\mathrm{x}_{1}^{\mathrm{n}_{1}} \mathrm{z}^{\mathrm{r}_{1}+\mathrm{s}_{2}} \mathrm{x}_{4}^{\mathrm{n}_{2}}: \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}
$$

## 2-Dyck loops are real time OCA

Dyck loops of shape $\left\{\mathrm{x}_{1}^{\mathrm{n}_{1}} \mathrm{z}^{\mathrm{r} \mathrm{n}_{1}+\mathrm{s} \mathrm{n}_{2}} \mathrm{x}_{4}^{\mathrm{n}_{2}}: \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}$ with $\mathrm{x}_{1}$ and z having distinct primitive roots as well as $z$ and $x_{4}$

- The Čulík's OCA recognizes in real time $\left\{a^{n_{1}} b^{n_{1}+n_{2}} c^{n_{2}}: n_{1}, n_{2} \geq 0\right\}$ with $a, b, c$ distinct letters
- By way of geometric transformations of the Čulík's OCA, we construct real time OCAs which recognize the slight variants: $\left\{a^{\mathrm{n}_{1}} \mathrm{~b}^{\mathrm{r} \mathrm{n}_{1}+\mathrm{s} \mathrm{n}_{2}} \mathrm{c}^{\mathrm{n}_{2}}: \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}$
- Making use of Okhotin's equivalence, we translate these OCAs in terms of linear conjunctive grammars
- Let h be the homomorphism $\mathrm{h}(\mathrm{a})=\mathrm{x}_{1}, \mathrm{~h}(\mathrm{~b})=\mathrm{z}, \mathrm{h}(\mathrm{c})=\mathrm{x}_{4}$. Providing that $h(a)$ and $h(b)$, as well as $h(b)$ and $h(c)$, have distinct primitive roots, we can modify the previous linear conjunctive grammars to generate

$$
h\left(\left\{a^{n_{1}} b^{\mathrm{r}_{1}+\mathrm{n}_{2} n_{2}} c^{\mathrm{n}_{2}}: n_{1}, n_{2} \geq 0\right\}\right)=\left\{\mathrm{x}_{1}^{\mathrm{n}_{1}} z^{\mathrm{r}_{1}+\mathrm{n}_{2} \mathrm{n}_{2}} \mathrm{x}_{4}^{\mathrm{n}_{2}}: n_{1}, n_{2} \geq 0\right\}
$$

## Conclusion

Linear-slender CFL are real time OCA languages
Three ingredients:

- the characterization of poly-slender CFL in terms of Dyck loops given by Ilie, Rozenberg and Salomaa
- the Čulík's OCA which recognizes in real time the language $\left\{a^{n} b^{n+m} a^{m}: n, m \geq 0\right\}$
- the Okhotin's characterization of real time OCA by linear conjunctive grammars


## Conclusion

Question: Are poly-slender CFL real time OCA languages?
A preliminary step:
How to extend the Čulik's algorithm for the bounded versions of the language of words whose the number of a's equals the number of $b$ 's?


## Bibliography

國 Karel Čulík II.
Variations of the firing squad problem and applications. Information Processing Letters, 30(3):152-157, 1989.

Lucian Ilie, Grzegorz Rozenberg, and Arto Salomaa.
A characterization of poly-slender context-free languages.
Theoretical Informatics and Applications, 34(1):77-86, 2000.
埥 Alexander Okhotin.
On the equivalence of linear conjunctive grammars and trellis automata.
RAIRO Informatique Théorique et Applications, 38(1):69-88, 2004.

