
Recognition of

Linear-Slender Context-Free Languages

by Real Time One-Way Cellular Automata

Véronique Terrier

GREYC - Université de Caen

1

Introduction

Objective
To better understand the algorithmic capacity of cellular automata

We will show how one of the simplest types of cellular automata
can simulate a restricted variant of context free languages.

2

Context-free language
Basic notions

Context-free language (CFL)
{anbn+mam : n ≥ 0, m ≥ 0}
S → XY

X → aXb | ε
Y → bXa | ε

Linear CFL
L0 = {auwbu : u > 0, w = ε or w ∈ b{a, b}∗a}
S → aSb | abTab | ab
T → Ta | Tb | ε

3

Poly-slender and linear-slender CFL

The counting function of a language L

]n(L): the number of words in L of length n

A language L is
• k-poly-slender if]n(L) is in O(nk).
• linear-slender if]n(L) is in O(n).

Examples
{anbn+mam : n ≥ 0, m ≥ 0} is a linear-slender CFL

]n(L) =

{
0 if n is odd
n/2− 1 if n is even

L0={auwbu : u>0, w=ε or w∈b{a, b}∗a} is not a poly-slender CFL
]n(L0) ∼ 2n

{an1bn2an3bn4an5 : n1 + n3 + n5 = n2 + n4} is a 3-poly-slender CFL
]n(L) ∼ n3

4

Poly-slender and linear-slender CFL
Characterization in terms of Dyck Loops

k-Dyck Loop (Ilie, Rozenberg and Salomaa)

Given

• a Dyck word on {[,]}: z1z2 · · · z2k
• some words y0, y1, · · · , y2k and x1, · · · , x2k
• a map
hn1,··· ,nk(y0z1y1z2y2 · · · z2ky2k) = y0x

e1
1 y1x

e2
2 y2 · · · xe2k2k y2k

where, if zl and zr are the i-th matching parenthesis then
both exponents el and er are ni.

A k-Dyck loop is

{hn1,··· ,nk(y0z1y1z2y2 · · · y2k−1z2ky2k) : ni ≥ 0}

5

Poly-slender and linear-slender CFL
Characterization in terms of Dyck Loops

Examples
{an1bn1+n2an2 : n1, n2 ≥ 0} is a 2-Dyck loop with Dyck word [][],
y0 = · · · = y4 = ε and x1 = x4 = a, x2 = x3 = b

{an1bn1+n2an2+n3bn3+n4an4 : ni ≥ 0} is a 4-Dyck loop with Dyck
word [][][][], yi=ε and x1=x4=x5=x8=a, x2=x3=x6=x7=b

{an1+n2bn2an3bn1+n3+n4an4 : ni ≥ 0} is a 4-Dyck loop with Dyck
word [[][]][]

Theorem (Ilie, Rozenberg and Salomaa)

For any k ≥ 0, a CFL is k-poly-slender if and only if
it is a �nite union of (k + 1)-Dyck loops.

6

Real time OCA

Result of the

computation

on the top

A real time OCA is speci�ed by:

• an input alphabet Σ

• a �nite set of states S (S ⊃ Σ)

• a subset of accepting states F

• a transition function δ : S × S → S

7

Real time OCA

Result of the

computation

on the top

A real time OCA is speci�ed by:

• an input alphabet Σ

• a �nite set of states S (S ⊃ Σ)

• a subset of accepting states F

• a transition function δ : S × S → S

7

Real time OCA

Result of the

computation

on the top

A real time OCA is speci�ed by:

• an input alphabet Σ

• a �nite set of states S (S ⊃ Σ)

• a subset of accepting states F

• a transition function δ : S × S → S

7

Real time OCA

Result of the

computation

on the top

A real time OCA is speci�ed by:

• an input alphabet Σ

• a �nite set of states S (S ⊃ Σ)

• a subset of accepting states F

• a transition function δ : S × S → S

7

Real time OCA

Result of the

computation

on the top

A real time OCA is speci�ed by:

• an input alphabet Σ

• a �nite set of states S (S ⊃ Σ)

• a subset of accepting states F

• a transition function δ : S × S → S

7

Real time OCA
Language recognition

The language accepted by a real time OCA

The set of all words whose computation ends in an accepting state

Σ:

S :

F :

δ:

accepts
L0 = {auwbu : u > 0,
w = ε or w ∈ b{a, b}∗a}

A main feature

The computation of a word contains the computation of all its
factors.

8

Real time OCA
Recognition of

{anbncmdm : n ≥ 0, m ≥ 0} = {anbn(c+ d)+ : n ≥ 0} ∩ {(a+ b)+cmdm : m ≥ 0}

9

The �ulík algorithm
Recognition of {anbn+m

d
m : n ≥ 0, m ≥ 0}

Firing Squad
with two generals

10

The �ulík algorithm
Recognition of {anbn+m

d
m : n ≥ 0, m ≥ 0}

Firing Squad
with two generals

10

Real time OCA
A robust class

The real time OCA class

• is closed under boolean operations

• is not closed under morphism, concatenation

• contains all linear CFL

Characterization in terms of linear conjunctive grammar

A linear CF grammar broaden with a conjunctive operation &

Theorem (Okhotin 2004)

A language L is recognized in real time by an OCA if and only if
L is generated by a linear conjunctive grammar.

11

Relationship between CFL and real time OCA
CFL and real time OCA are incomparable

CFL do not contain real time OCA
{anbncn : n > 0} is a real time OCA language but not a CFL.

Real time OCA do not contain CFL
L0 = {auwbu : u > 0, w = ε or w ∈ b{a, b}∗a}
L0 is a linear CFL and so a real time OCA language.
L0 L0 is a CFL but not a real time OCA language.

Real time OCA do not contain deterministic CFL (and even LL(1)
languages) (Okhotin 2014)
L1 = {cmbal1b · · · alm−1b : m > 0, li ≥ 0}
L2 = {anbwdn : n > 0, w ∈ {a, b}∗}
L1 and L2 are linear CFL and so real time OCA languages.
L1 L2 is a deterministic CFL (and even a LL(1) language) but not a
real time OCA language.

12

Relationship between CFL and real time OCA

real time OCA CFL

anbncn

Dyck language

linear CFL

anbn+mam

L0 L0

L1 L2

Question

What languages do they have in common?

13

Poly-slender CFL and rt OCA language

Conjecture

The poly-slender CFL are real time OCA languages.

Here we only prove the minimal statement:

Claim

The linear-slender CFL are real time OCA languages.

Recall that the linear-slender CFL correspond to the �nite unions of
2-Dyck loops.
⇒ We have to show that the 2-Dyck loops are recognizable by real
time OCA.

14

Poly-slender CFL and rt OCA language
The real question: the closure under concatenation

Theorem (Ginsburg and Spanier)

The family of poly-slender CFL is the smallest family which contains
all �nite languages and is closed under the following operations:

1. union

2. catenation

3. (x , y)?L =
⋃
n≥0

xnLyn for any x , y words

The real time OCA languages
• include all �nite languages
• are closed under union and ? operation
• are not closed under concatenation

But, the known witnesses for non-closure under concatenation are
not languages inside the family of poly-slender CFL.

15

2-Dyck loops are real time OCA
Shapes of 2-Dyck loops

Case 1. The underlying Dyck word is [[]]
{y0xn11 y1x

n2
2 y2x

n2
3 y3x

n1
4 y4 : n1, n2 ≥ 0}

Case 2. The underlying Dyck word is [][]
{y0xn11 y1x

n1
2 y2x

n2
3 y3x

n2
4 y4 : n1, n2 ≥ 0}

In the following, we will deal with simpli�ed version of 2-Dyck loops
by setting y0 = · · · = y4 = ε .
It does not change the essential arguments.

Case 1. The underlying Dyck word is [[]]
{xn11 x

n2
2 x

n2
3 x

n1
4 : n1, n2 ≥ 0}

Case 2. The underlying Dyck word is [][]
{xn11 x

n1
2 x

n2
3 x

n2
4 : n1, n2 ≥ 0}

16

2-Dyck loops are real time OCA
Shapes of 2-Dyck loops

Case 1. The underlying Dyck word is [[]]
{y0xn11 y1x

n2
2 y2x

n2
3 y3x

n1
4 y4 : n1, n2 ≥ 0}

Case 2. The underlying Dyck word is [][]
{y0xn11 y1x

n1
2 y2x

n2
3 y3x

n2
4 y4 : n1, n2 ≥ 0}

In the following, we will deal with simpli�ed version of 2-Dyck loops
by setting y0 = · · · = y4 = ε .
It does not change the essential arguments.

Case 1. The underlying Dyck word is [[]]
{xn11 x

n2
2 x

n2
3 x

n1
4 : n1, n2 ≥ 0}

Case 2. The underlying Dyck word is [][]
{xn11 x

n1
2 x

n2
3 x

n2
4 : n1, n2 ≥ 0}

16

2-Dyck loops are real time OCA
Case 1. The underlying Dyck word is [[]]

The corresponding Dyck loop is {xn11 x
n2
2 x

n2
3 x

n1
4 : n1, n2 ≥ 0}.

It is a linear CFL language and so it is a real time OCA language.

The closure under ? operation ((x , y)?L =
⋃
n≥0

xnLyn) is here involved.

17

2-Dyck loops are real time OCA
Case 2. The underlying Dyck word is [][]

The corresponding Dyck loop is {xn11 x
n1
2 x

n2
3 x

n2
4 : n1, n2 ≥ 0}.

The closure under concatenation of 1-Dyck loops is now involved.

Case 2.a. x1 and x2 have the same primitive root (or x3 and x4)
A degenerated case

x1 = zr, x2 = zs for some z, r, s
{xn11 x

n1
2 x

n2
3 x

n2
4 : n1, n2 ≥ 0} = {z(r+s)n1x

n2
3 x

n2
4 : n1, n2 ≥ 0} is a

linear CFL

Case 2.b. x2 and x3 do not have the same primitive root
A type of marked concatenation

The Dyck loop is the intersection of two linear CFL
{xn11 x

n1
2 x

n2
3 x

n2
4 : n1, n2 ≥ 0} =

{xn11 x
n1
2 xm3 x

p
4 : n1, m, p ≥ 0} ∩ {xm1 x

p
2 x

n2
3 x

n2
4 : n2, m, p ≥ 0}

Case 2.c. x2 and x3 have the same primitive root but not x1, x2
and x3, x4
The critical case

{xn11 x
n1
2 x

n2
3 x

n2
4 : n1, n2 ≥ 0} = {xn11 zr n1+s n2x

n2
4 : n1, n2 ≥ 0} 18

2-Dyck loops are real time OCA
Dyck loops of shape {xn1

1
z
r n1+s n2x

n2

4
: n1, n2 ≥ 0} with x1 and z having distinct primitive

roots as well as z and x4

• The �ulík's OCA recognizes in real time
{an1bn1+n2cn2 : n1, n2 ≥ 0} with a, b, c distinct letters

• By way of geometric transformations of the �ulík's OCA, we
construct real time OCAs which recognize the slight
variants: {an1br n1+s n2cn2 : n1, n2 ≥ 0}

• Making use of Okhotin's equivalence, we translate these OCAs
in terms of linear conjunctive grammars

• Let h be the homomorphism h(a) = x1, h(b) = z, h(c) = x4.
Providing that h(a) and h(b), as well as h(b) and h(c), have
distinct primitive roots, we can modify the previous linear
conjunctive grammars to generate
h ({an1br n1+s n2cn2 : n1, n2 ≥ 0}) = {xn11 zr n1+s n2x

n2
4 : n1, n2 ≥ 0}

19

Conclusion

Linear-slender CFL are real time OCA languages

Three ingredients:

• the characterization of poly-slender CFL in terms of Dyck
loops given by Ilie, Rozenberg and Salomaa

• the �ulík's OCA which recognizes in real time the language
{anbn+mam : n,m ≥ 0}

• the Okhotin's characterization of real time OCA by linear
conjunctive grammars

20

Conclusion

Question: Are poly-slender CFL real time OCA languages?

A preliminary step:

How to extend the �ulík's algorithm for the bounded versions
of the language of words whose the number of a's equals the
number of b's?

21

Bibliography

Karel �ulík II.
Variations of the �ring squad problem and applications.
Information Processing Letters, 30(3):152 � 157, 1989.

Lucian Ilie, Grzegorz Rozenberg, and Arto Salomaa.
A characterization of poly-slender context-free languages.
Theoretical Informatics and Applications, 34(1):77�86, 2000.

Alexander Okhotin.
On the equivalence of linear conjunctive grammars and trellis
automata.
RAIRO Informatique Théorique et Applications, 38(1):69�88,
2004.

22

