Recognition of
Linear-Slender Context-Free Languages
by Real Time One-Way Cellular Automata

Véronique Terrier
GREYC - Université de Caen

Introduction

Objective
To better understand the algorithmic capacity of cellular automata

We will show how one of the simplest types of cellular automata
can simulate a restricted variant of context free languages.

Context-free language

Basic notions

Context-free language (CFL)
{a"p™™a™: n > 0,m > 0}
S = XY
X — aXble
Y — bXal|e
Linear CFL
Lo = {a"wb":u > 0,w =€ orw € b{a,b}*a}
S — aSb|abTab|ab
T — Ta|Th|e

Poly-slender and linear-slender CFL

The counting function of a language L
fn(L): the number of words in L of length n
A language L is
e k-poly-slender if #,(L) is in O(n¥).
e linear-slender if #,(L) is in O(n).

Examples

{a"b®™™a®: n > 0,m > 0} is a linear-slender CFL
0 if nis odd

(L) = { n/2—1 if niseven

Lo={a"wb": u>0,w=e or web{a,b}"a} is not a poly-slender CFL
in(Lo) ~ 2"

{a™b™a™b™a™: ny + n3 + ng = np + na} is a 3-poly-slender CFL
#a(L) ~ n?

Poly-slender and linear-slender CFL

Characterization in terms of Dyck Loops

k-Dyck Loop (llie, Rozenberg and Salomaa)
Given

e a Dyck word on {[,]}: 2120 - 2ok

e some words Vo, V1, ,Vox and xq, -+, Xog

® a map

n, o e (0Z1Y122Y2 * - ZoxYox) = YoX1'V1X5 V2 Xop Yok
where, if z; and z, are the i-th matching parenthesis then
both exponents e; and e, are n;.

A k-Dyck loop is

{bn, .. ne(Y0Z1Y12Z2Y2 - - - Yox—1Z2KY2x): Dy > O}

Poly-slender and linear-slender CFL

Characterization in terms of Dyck Loops

Examples
{a™Mb™2g%2) ny, > 0} is a 2-Dyck loop with Dyck word [][],
Jo=+-=ya=candxy =x4 =a,Xp =X3 =D

{anriphtthagnatispiatiegns . o, > 0} js a 4-Dyck loop with Dyck
word [][][][], yi=¢ and X1 =X4—=Xp—=Xg—2a,Xp—=X3—=Xg—X7 =b
{anttnaphaghsyitistiagns . n, > 0} js a 4-Dyck loop with Dyck

word [[][1][]

Theorem (llie, Rozenberg and Salomaa)

For any k > 0, a CFL is k-poly-slender if and only if
it is a finite union of (k + 1)-Dyck loops.

Real time OCA

A real time OCA is specified by:
e an input alphabet X

e o

e a finite set of states S (S D X)
® o 00O

e a subset of accepting states F
[

e a transition function §: S xS — S

Real time OCA

A real time OCA is specified by:
e an input alphabet X

e o

e a finite set of states S (S D X)
® o 00O

e a subset of accepting states F
[

e a transition function §: S xS — S

Real time OCA

A real time OCA is specified by:
e an input alphabet X

e o

e a finite set of states S (S D X)
® o 00O

e a subset of accepting states F
[

e a transition function §: S xS — S

Real time OCA

A real time OCA is specified by:
e an input alphabet X

e o

e a finite set of states S (S D X)
® o 00O

e a subset of accepting states F
[

e a transition function §: S xS — S

Real time OCA

A real time OCA is specified by:
e an input alphabet X

e o

e a finite set of states S (S D X)
® o 00O

e a subset of accepting states F
[

Result of the

computation e a transition function §: S xS — S

on the top

Real time OCA

Language recognition

The language accepted by a real time OCA

The set of all words whose computation ends in an accepting state

o’
° e%2e%° % accepts
0%’ o 0 0% 0 - - o% e% 0 %% e%%
02000000, 0. 0300 o%s_ %0000 o% %o elele% Lo = {a"wb":u >0,

000000 0OCOOOGOOOIOOOOOONONOOONODONONNODO
w=¢€orweb{a,b}*a}
A main feature

The computation of a word contains the computation of all its
factors.

Real time OCA

Recognition of
{a""c"d":n > 0,m > 0} = {a"*(c +d)":n >0} N{(a+b)"c"d": m > 0}

The Culik algorithm

Recognition of {a”b"™d": n > 0,m > 0}

The Culik algorithm

Recognition of {a”b"™d": n > 0,m > 0}

Firing Squad
with two generals

10

Real time OCA

A robust class

The real time OCA class
e is closed under boolean operations
e is not closed under morphism, concatenation

e contains all linear CFL

Characterization in terms of linear conjunctive grammar

A linear CF grammar broaden with a conjunctive operation &

Theorem (Okhotin 2004)
A language L is recognized in real time by an OCA if and only if
L is generated by a linear conjunctive grammar.

11

Relationship between CFL and real time OCA

CFL and real time OCA are incomparable

CFL do not contain real time OCA
{a"b"c™: n > 0} is a real time OCA language but not a CFL.

Real time OCA do not contain CFL

Lo = {a"wb": u > 0,w = ¢ or w € b{a,b}*a}

Ly is a linear CFL and so a real time OCA language.
Lo Lo is a CFL but not a real time OCA language.

Real time OCA do not contain deterministic CFL (and even LL(1)
Ianguages) (Okhotin 2014)

= {c™pal''b---al*tb:m > 0,1; >0}

= {a"wwd": n > 0,w € {a,b}"}
L1 and Ly are linear CFL and so real time OCA languages.
Li Ly is a deterministic CFL (and even a LL(1) language) but not a
real time OCA language.

12

Relationship between CFL and real time OCA

real time OCA
Dyck language

linear CFL

an bn+mam

Question
What languages do they have in common?

13

Poly-slender CFL and rt OCA language

Conjecture
The poly-slender CFL are real time OCA languages.

Here we only prove the minimal statement:

Claim
The linear-slender CFL are real time OCA languages.

Recall that the linear-slender CFL correspond to the finite unions of
2-Dyck loops.

=- We have to show that the 2-Dyck loops are recognizable by real
time OCA.

14

Poly-slender CFL and rt OCA language

The real question: the closure under concatenation

Theorem (Ginsburg and Spanier)
The family of poly-slender CFL is the smallest family which contains
all finite languages and is closed under the following operations:

1. union

2. catenation

3. (x,y)*L= U x"Ly" for any x,y words
n>0

The real time OCA languages
e include all finite languages
e are closed under union and * operation
e are not closed under concatenation
But, the known witnesses for non-closure under concatenation are

not languages inside the family of poly-slender CFL.
15

2-Dyck loops are real time OCA

Shapes of 2-Dyck loops

Case 1. The underlying Dyck word is [[]]
{yoxi'y1%5°y2x5"ysx;'ya: 1, mp > 0}

Case 2. The underlying Dyck word is [|[]
{yoxi'y1%3'y2x3"y3xy’ya: ny, 0o > O}

In the following, we will deal with simplified version of 2-Dyck loops
by setting yo =+ =ya = ¢ .
It does not change the essential arguments.

16

2-Dyck loops are real time OCA

Shapes of 2-Dyck loops

In the following, we will deal with simplified version of 2-Dyck loops
by setting yo =+ =ya = ¢ .
It does not change the essential arguments.

Case 1. The underlying Dyck word is [[]]
{x1'x3?x3?x3" : ny,ny > 0}

Case 2. The underlying Dyck word is [|[]
{x]'x5'x3?x,? ny,np > 0}

16

2-Dyck loops are real time OCA
Case 1. The underlying Dyck word is [[]]

The corresponding Dyck loop is {x]'x5x3?x}" : ny,ny > 0}.

It is a linear CFL language and so it is a real time OCA language.

The closure under x operation ((x,y)*L = |J x"Ly") is here involved.
n>0

17

2-Dyck loops are real time OCA

Case 2. The underlying Dyck word is [][]
The corresponding Dyck loop is {x]'x5'x5?x,?: ny,ny > 0}.
The closure under concatenation of 1-Dyck loops is now involved.
Case 2.a. %1 and x5 have the same primitive root (or x3 and x4)
A degenerated case
Xy = 2%, %0 = z° for some z, 1,8
(=1 x5 %32 %52 ny,ng > 0} = {2(FFo)mx225%2: 0y ny >0} is a
linear CFL
Case 2.b. x5 and x3 do not have the same primitive root
A type of marked concatenation
The Dyck loop is the intersection of two linear CFL
{x]'x5'x3°%x3* ny,np > 0} =

{xP'x5' x5 x5 ny,mp > 0} N {xF x5 x32x3%: np,m,p > 0}

Case 2.c. x5 and x3 have the same primitive root but not x4, x5
and x3, x4
The critical case
{x1'x5'x32x32: ny,np > 0} = {x]'z"™T5™x}2: ny ny > 0}

2-Dyck loops are real time OCA

ny_rnj;+sng no

Dyck loops of shape {x}'z b
roots as well as z and x.

“ng,np > 0} with x4 and z having distinct primitive

e The Culik’s OCA recognizes in real time
{aMp™h2c2: 0y ny > 0} with a, b, ¢ distinct letters

e By way of geometric transformations of the Culik's OCA, we
construct real time OCAs which recognize the slight
variants: {a®tbT™Fsn2cm2: ny ny >0}

e Making use of Okhotin’s equivalence, we translate these OCAs
in terms of linear conjunctive grammars

e Let h be the homomorphism h(a) = x4, h(b) = z, h(c) = xa.
Providing that h(a) and h(b), as well as h(b) and h(c), have
distinct primitive roots, we can modify the previous linear
conjunctive grammars to generate
h({a™Mb*™Fsh2ci2: ny ny > 0}) = {x[1z"™T82x32: ny ny > 0}

19

Conclusion

Linear-slender CFL are real time OCA languages
Three ingredients:

e the characterization of poly-slender CFL in terms of Dyck
loops given by llie, Rozenberg and Salomaa

o the Culik's OCA which recognizes in real time the language
{a"b™tMa™: n ' m > 0}

o the Okhotin’s characterization of real time OCA by linear
conjunctive grammars

20

Conclusion

Question: Are poly-slender CFL real time OCA languages?
A preliminary step:
How to extend the Culik’s algorithm for the bounded versions

of the language of words whose the number of a's equals the
number of b's?

000000000
000000
(XX)

(XX XX) (XXX L]
00000

(XX XY)
(XXX}

21

Bibliography

(4 Karel Culik 1.
Variations of the firing squad problem and applications.
Information Processing Letters, 30(3):152 — 157, 1989.

[4 Lucian llie, Grzegorz Rozenberg, and Arto Salomaa.
A characterization of poly-slender context-free languages.
Theoretical Informatics and Applications, 34(1):77-86, 2000.

[4 Alexander Okhotin.
On the equivalence of linear conjunctive grammars and trellis

automata.
RAIRO Informatique Théorique et Applications, 38(1):69-88,
2004.

22

