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Introduction

Objective
To better understand the algorithmic capacity of cellular automata

We will show how one of the simplest types of cellular automata
can simulate a restricted variant of context free languages.



Context-free language

Basic notions

Context-free language (CFL)
{a"p™™a™: n > 0,m > 0}
S = XY
X — aXble
Y — bXal|e
Linear CFL
Lo = {a"wb":u > 0,w =€ orw € b{a,b}*a}
S — aSb|abTab|ab
T — Ta|Th|e



Poly-slender and linear-slender CFL

The counting function of a language L
fn(L): the number of words in L of length n
A language L is
e k-poly-slender if #,(L) is in O(n¥).
e linear-slender if #,(L) is in O(n).

Examples

{a"b®™™a®: n > 0,m > 0} is a linear-slender CFL
0 if nis odd

(L) = { n/2—1 if niseven

Lo={a"wb": u>0,w=e or web{a,b}"a} is not a poly-slender CFL
in(Lo) ~ 2"

{a™b™a™b™a™: ny + n3 + ng = np + na} is a 3-poly-slender CFL
#a(L) ~ n?



Poly-slender and linear-slender CFL

Characterization in terms of Dyck Loops

k-Dyck Loop (llie, Rozenberg and Salomaa)
Given

e a Dyck word on {[,]}: 2120 - 2ok

e some words Vo, V1, ,Vox and xq, -+, Xog

® a map

n, o e (0Z1Y122Y2 * - ZoxYox) = YoX1'V1X5 V2 Xop Yok
where, if z; and z, are the i-th matching parenthesis then
both exponents e; and e, are n;.

A k-Dyck loop is

{bn, .. ne(Y0Z1Y12Z2Y2 - - - Yox—1Z2KY2x): Dy > O}



Poly-slender and linear-slender CFL

Characterization in terms of Dyck Loops

Examples
{a™Mb™2g%2 ) ny, > 0} is a 2-Dyck loop with Dyck word [][],
Jo=+-=ya=candxy =x4 =a,Xp =X3 =D

{anriphtthagnatispiatiegns . o, > 0} js a 4-Dyck loop with Dyck
word [][][][], yi=¢ and X1 =X4—=Xp—=Xg—2a,Xp—=X3—=Xg—X7 =b
{anttnaphaghsyitistiagns . n, > 0} js a 4-Dyck loop with Dyck

word [[][1][]

Theorem (llie, Rozenberg and Salomaa)

For any k > 0, a CFL is k-poly-slender if and only if
it is a finite union of (k + 1)-Dyck loops.



Real time OCA

A real time OCA is specified by:
e an input alphabet X

e o

e a finite set of states S (S D X)
® o 00O

e a subset of accepting states F
[

e a transition function §: S xS — S
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Real time OCA

A real time OCA is specified by:
e an input alphabet X

e o

e a finite set of states S (S D X)
® o 00O

e a subset of accepting states F
[

Result of the

computation e a transition function §: S xS — S

on the top




Real time OCA

Language recognition

The language accepted by a real time OCA

The set of all words whose computation ends in an accepting state

o’
° e%2e%° % accepts
0%’ o 0 0% 0 - - o% e% 0 %% e%%
02000000, 0. 0300 o%s_ %0000 o% %o elele% Lo = {a"wb":u >0,

000000 0OCOOOGOOOIOOOOOONONOOONODONONNODO
w=¢€orweb{a,b}*a}
A main feature

The computation of a word contains the computation of all its
factors.



Real time OCA

Recognition of
{a""c"d":n > 0,m > 0} = {a"*(c +d)":n >0} N{(a+b)"c"d": m > 0}




The Culik algorithm

Recognition of {a”b"™d": n > 0,m > 0}



The Culik algorithm

Recognition of {a”b"™d": n > 0,m > 0}

Firing Squad
with two generals
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Real time OCA

A robust class

The real time OCA class
e is closed under boolean operations
e is not closed under morphism, concatenation

e contains all linear CFL

Characterization in terms of linear conjunctive grammar

A linear CF grammar broaden with a conjunctive operation &

Theorem (Okhotin 2004)
A language L is recognized in real time by an OCA if and only if
L is generated by a linear conjunctive grammar.
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Relationship between CFL and real time OCA

CFL and real time OCA are incomparable

CFL do not contain real time OCA
{a"b"c™: n > 0} is a real time OCA language but not a CFL.

Real time OCA do not contain CFL

Lo = {a"wb": u > 0,w = ¢ or w € b{a,b}*a}

Ly is a linear CFL and so a real time OCA language.
Lo Lo is a CFL but not a real time OCA language.

Real time OCA do not contain deterministic CFL (and even LL(1)
Ianguages) (Okhotin 2014)

= {c™pal''b---al*tb:m > 0,1; >0}

= {a"wwd": n > 0,w € {a,b}"}
L1 and Ly are linear CFL and so real time OCA languages.
Li Ly is a deterministic CFL (and even a LL(1) language) but not a
real time OCA language.
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Relationship between CFL and real time OCA

real time OCA
Dyck language

linear CFL

an bn+mam

Question
What languages do they have in common?
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Poly-slender CFL and rt OCA language

Conjecture
The poly-slender CFL are real time OCA languages.

Here we only prove the minimal statement:

Claim
The linear-slender CFL are real time OCA languages.

Recall that the linear-slender CFL correspond to the finite unions of
2-Dyck loops.

=- We have to show that the 2-Dyck loops are recognizable by real
time OCA.
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Poly-slender CFL and rt OCA language

The real question: the closure under concatenation

Theorem (Ginsburg and Spanier)
The family of poly-slender CFL is the smallest family which contains
all finite languages and is closed under the following operations:

1. union

2. catenation

3. (x,y)*L= U x"Ly" for any x,y words
n>0

The real time OCA languages
e include all finite languages
e are closed under union and * operation
e are not closed under concatenation
But, the known witnesses for non-closure under concatenation are

not languages inside the family of poly-slender CFL.
15



2-Dyck loops are real time OCA

Shapes of 2-Dyck loops

Case 1. The underlying Dyck word is [[]]
{yoxi'y1%5°y2x5"ysx;'ya: 1, mp > 0}

Case 2. The underlying Dyck word is [|[]
{yoxi'y1%3'y2x3"y3xy’ya: ny, 0o > O}

In the following, we will deal with simplified version of 2-Dyck loops
by setting yo =+ =ya = ¢ .
It does not change the essential arguments.
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Shapes of 2-Dyck loops

In the following, we will deal with simplified version of 2-Dyck loops
by setting yo =+ =ya = ¢ .
It does not change the essential arguments.

Case 1. The underlying Dyck word is [[]]
{x1'x3?x3?x3" : ny,ny > 0}

Case 2. The underlying Dyck word is [|[]
{x]'x5'x3?x,? ny,np > 0}

16



2-Dyck loops are real time OCA
Case 1. The underlying Dyck word is [[]]

The corresponding Dyck loop is {x]'x5x3?x}" : ny,ny > 0}.

It is a linear CFL language and so it is a real time OCA language.

The closure under x operation ((x,y)*L = |J x"Ly" ) is here involved.
n>0
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2-Dyck loops are real time OCA

Case 2. The underlying Dyck word is [][]
The corresponding Dyck loop is {x]'x5'x5?x,?: ny,ny > 0}.
The closure under concatenation of 1-Dyck loops is now involved.
Case 2.a. %1 and x5 have the same primitive root (or x3 and x4)
A degenerated case
Xy = 2%, %0 = z° for some z, 1,8
(=1 x5 %32 %52 ny,ng > 0} = {2(FFo)mx225%2: 0y ny >0} is a
linear CFL
Case 2.b. x5 and x3 do not have the same primitive root
A type of marked concatenation
The Dyck loop is the intersection of two linear CFL
{x]'x5'x3°%x3* ny,np > 0} =

{xP'x5' x5 x5 ny,mp > 0} N {xF x5 x32x3%: np,m,p > 0}

Case 2.c. x5 and x3 have the same primitive root but not x4, x5
and x3, x4
The critical case
{x1'x5'x32x32: ny,np > 0} = {x]'z"™T5™x}2: ny ny > 0}



2-Dyck loops are real time OCA

ny_rnj;+sng no

Dyck loops of shape {x}'z b
roots as well as z and x.

“ng,np > 0} with x4 and z having distinct primitive

e The Culik’s OCA recognizes in real time
{aMp™h2c2: 0y ny > 0} with a, b, ¢ distinct letters

e By way of geometric transformations of the Culik's OCA, we
construct real time OCAs which recognize the slight
variants: {a®tbT™Fsn2cm2: ny ny >0}

e Making use of Okhotin’s equivalence, we translate these OCAs
in terms of linear conjunctive grammars

e Let h be the homomorphism h(a) = x4, h(b) = z, h(c) = xa.
Providing that h(a) and h(b), as well as h(b) and h(c), have
distinct primitive roots, we can modify the previous linear
conjunctive grammars to generate
h({a™Mb*™Fsh2ci2: ny ny > 0}) = {x[1z"™T82x32: ny ny > 0}
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Conclusion

Linear-slender CFL are real time OCA languages
Three ingredients:

e the characterization of poly-slender CFL in terms of Dyck
loops given by llie, Rozenberg and Salomaa

o the Culik's OCA which recognizes in real time the language
{a"b™tMa™: n ' m > 0}

o the Okhotin’s characterization of real time OCA by linear
conjunctive grammars
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Conclusion

Question: Are poly-slender CFL real time OCA languages?
A preliminary step:
How to extend the Culik’s algorithm for the bounded versions

of the language of words whose the number of a's equals the
number of b's?

000000000
000000
(XX )

(XX XX) (XXX L]
00000

(XX XY)
(XXX}
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