Recognition of Linear-Slender Context-Free Languages by Real Time One-Way Cellular Automata

> Véronique Terrier GREYC - Université de Caen

Introduction

Objective

To better understand the algorithmic capacity of cellular automata

We will show how one of the simplest types of cellular automata can simulate a restricted variant of context free languages.

Context-free language

Basic notions

Context-free language (CFL) $\{a^{n}b^{n+m}a^{m}: n \ge 0, m \ge 0\}$ $S \rightarrow XY$ $X \rightarrow aXb \mid \varepsilon$ $Y \rightarrow bXa \mid \varepsilon$

Linear CFL

Poly-slender and linear-slender CFL

The counting function of a language L $\sharp_n(L)$: the number of words in L of length n

A language L is

- k-poly-slender if $\sharp_n(L)$ is in $\mathcal{O}(n^k)$.
- linear-slender if $\sharp_n(L)$ is in $\mathcal{O}(n)$.

Examples $\{\mathbf{a}^{n}\mathbf{b}^{n+m}\mathbf{a}^{m}: n \ge 0, m \ge 0\} \text{ is a linear-slender CFL}$ $\sharp_{n}(L) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ n/2 - 1 & \text{if } n \text{ is even} \end{cases}$

$$\begin{split} & L_0 \!=\! \{a^u w b^u \colon u \!>\! 0, w \!=\! \varepsilon \text{ or } w \!\in\! b\{a,b\}^*a\} \text{ is not a poly-slender CFL} \\ & \sharp_n(L_0) \sim 2^n \end{split}$$

 $\{a^{n_1}b^{n_2}a^{n_3}b^{n_4}a^{n_5}\colon n_1+n_3+n_5=n_2+n_4\}$ is a 3-poly-slender CFL $\sharp_n(L)\sim n^3$

Poly-slender and linear-slender CFL

Characterization in terms of Dyck Loops

k-Dyck Loop (Ilie, Rozenberg and Salomaa) Given

- a Dyck word on $\{[,]\}$: $z_1 z_2 \cdots z_{2k}$
- some words y_0, y_1, \cdots, y_{2k} and x_1, \cdots, x_{2k}
- a map

$$\begin{split} h_{n_1,\cdots,n_k}\big(y_0z_1y_1z_2y_2\cdots z_{2k}y_{2k}\big) &= y_0x_1^{e_1}y_1x_2^{e_2}y_2\cdots x_{2k}^{e_{2k}}y_{2k} \\ \text{where, if } z_1 \text{ and } z_r \text{ are the i-th matching parenthesis then} \\ \text{both exponents } e_1 \text{ and } e_r \text{ are } n_i. \end{split}$$

A k-Dyck loop is

 $\{h_{n_1,\cdots,n_k}(y_0z_1y_1z_2y_2\cdots y_{2k-1}z_{2k}y_{2k})\colon n_1\geq 0\}$

Poly-slender and linear-slender CFL Characterization in terms of Dyck Loops

Examples $\{a^{n_1}b^{n_1+n_2}a^{n_2}: n_1, n_2 \ge 0\}$ is a 2-Dyck loop with Dyck word [][], $y_0 = \cdots = y_4 = \varepsilon$ and $x_1 = x_4 = a, x_2 = x_3 = b$ $\{a^{n_1}b^{n_1+n_2}a^{n_2+n_3}b^{n_3+n_4}a^{n_4}: n_i \ge 0\}$ is a 4-Dyck loop with Dyck word [][][]], $y_i = \varepsilon$ and $x_1 = x_4 = x_5 = x_8 = a, x_2 = x_3 = x_6 = x_7 = b$ $\{a^{n_1+n_2}b^{n_2}a^{n_3}b^{n_1+n_3+n_4}a^{n_4}: n_i \ge 0\}$ is a 4-Dyck loop with Dyck word [][][]]

Theorem (Ilie, Rozenberg and Salomaa) For any $k \ge 0$, a CFL is k-poly-slender if and only if it is a finite union of (k + 1)-Dyck loops.

Language recognition

The language accepted by a real time OCA The set of all words whose computation ends in an accepting state

A main feature

The computation of a word contains the computation of all its factors.

 $\begin{array}{l} \mbox{Real time OCA} \\ \mbox{Recognition of} \\ \{a^nb^nc^md^m\colon n\geq 0,m\geq 0\} = \{a^nb^n(c+d)^+\colon n\geq 0\}\cap \{(a+b)^+c^md^m\colon m\geq 0\} \end{array}$

The Čulík algorithm Recognition of $\{a^nb^{n+m}d^m\colon n\geq 0,m\geq 0\}$

The Čulík algorithm Recognition of $\{a^nb^{n+m}d^m : n \ge 0, m \ge 0\}$

Real time OCA A robust class

The real time OCA class

- is closed under boolean operations
- is not closed under morphism, concatenation
- contains all linear CFL

Characterization in terms of linear conjunctive grammar

A linear CF grammar broaden with a conjunctive operation &

Theorem (Okhotin 2004)

A language L is recognized in real time by an OCA if and only if L is generated by a linear conjunctive grammar.

Relationship between CFL and real time OCA CFL and real time OCA are incomparable

CFL do not contain real time OCA $\{a^nb^nc^n : n > 0\}$ is a real time OCA language but not a CFL.

Real time OCA do not contain CFL $L_0 = \{a^u w b^u : u > 0, w = \varepsilon \text{ or } w \in b\{a, b\}^*a\}$ L_0 is a linear CFL and so a real time OCA language. $L_0 L_0$ is a CFL but not a real time OCA language.

Real time OCA do not contain deterministic CFL (and even LL(1)languages) (Okhotin 2014) $L_1 = \{c^m ba^{l_1} b \cdots a^{l_{m-1}} b \colon m > 0, l_i \ge 0\}$ $L_2 = \{a^n bwd^n \colon n > 0, w \in \{a, b\}^*\}$ L_1 and L_2 are linear CFL and so real time OCA languages. $L_1 L_2$ is a deterministic CFL (and even a LL(1) language) but not a real time OCA language.

Relationship between CFL and real time OCA

Question What languages do they have in common? Poly-slender CFL and rt OCA language

Conjecture The poly-slender CFL are real time OCA languages.

Here we only prove the minimal statement:

Claim

The linear-slender CFL are real time OCA languages.

Recall that the linear-slender CFL correspond to the finite unions of 2-Dyck loops.

 \Rightarrow We have to show that the 2-Dyck loops are recognizable by real time OCA.

Poly-slender CFL and rt OCA language

The real question: the closure under concatenation

Theorem (Ginsburg and Spanier)

The family of poly-slender CFL is the smallest family which contains all finite languages and is closed under the following operations:

- 1. union
- 2. catenation

3.
$$(x, y)^*L = \bigcup_{n \ge 0} x^n L y^n$$
 for any x, y words

The real time OCA languages

- include all finite languages
- \bullet are closed under union and \star operation
- are not closed under concatenation

But, the known witnesses for non-closure under concatenation are not languages inside the family of poly-slender CFL.

2-Dyck loops are real time OCA Shapes of 2-Dyck loops

$$\begin{array}{l} \mbox{Case 1. The underlying Dyck word is [[]]} \\ \{y_0 x_1^{n_1} y_1 x_2^{n_2} y_2 x_3^{n_2} y_3 x_4^{n_1} y_4 \colon n_1, n_2 \geq 0\} \\ \mbox{Case 2. The underlying Dyck word is [[]]} \\ \{y_0 x_1^{n_1} y_1 x_2^{n_1} y_2 x_3^{n_2} y_3 x_4^{n_2} y_4 \colon n_1, n_2 \geq 0\} \end{array}$$

In the following, we will deal with simplified version of 2-Dyck loops by setting $y_0 = \cdots = y_4 = \varepsilon$. It does not change the essential arguments.

2-Dyck loops are real time OCA Shapes of 2-Dyck loops

$$\begin{array}{l} \mbox{Case 1. The underlying Dyck word is [[]]} \\ \{y_0 x_1^{n_1} y_1 x_2^{n_2} y_2 x_3^{n_2} y_3 x_4^{n_1} y_4 \colon n_1, n_2 \geq 0\} \\ \mbox{Case 2. The underlying Dyck word is [[]]} \\ \{y_0 x_1^{n_1} y_1 x_2^{n_1} y_2 x_3^{n_2} y_3 x_4^{n_2} y_4 \colon n_1, n_2 \geq 0\} \end{array}$$

In the following, we will deal with simplified version of 2-Dyck loops by setting $y_0 = \cdots = y_4 = \varepsilon$. It does not change the essential arguments.

 $\begin{array}{l} \mbox{Case 1. The underlying Dyck word is [[]]} \\ & \{x_1^{n_1}x_2^{n_2}x_3^{n_2}x_4^{n_1}\colon n_1, n_2 \geq 0\} \\ \mbox{Case 2. The underlying Dyck word is [][]} \\ & \{x_1^{n_1}x_2^{n_1}x_3^{n_2}x_4^{n_2}\colon n_1, n_2 \geq 0\} \end{array}$

2-Dyck loops are real time OCA Case 1. The underlying Dyck word is [[]]

The corresponding Dyck loop is $\{x_1^{n_1}x_2^{n_2}x_3^{n_2}x_4^{n_1}: n_1, n_2 \ge 0\}$. It is a linear CFL language and so it is a real time OCA language.

The closure under \star operation $((x, y)^{\star}L = \bigcup_{n \ge 0} x^n L y^n)$ is here involved.

2-Dyck loops are real time OCA

Case 2. The underlying Dyck word is [][]

The corresponding Dyck loop is $\{x_1^{n_1}x_2^{n_1}x_3^{n_2}x_4^{n_2}: n_1, n_2 \ge 0\}.$

The closure under concatenation of 1-Dyck loops is now involved.

Case 2.a. x_1 and x_2 have the same primitive root (or x_3 and x_4) A degenerated case

 $x_1=z^r, x_2=z^s$ for some z,r,s $\{x_1^{n_1}x_2^{n_2}x_3^{n_2}x_4^{n_2}\colon n_1,n_2\geq 0\}=\{z^{(r+s)n_1}x_3^{n_2}x_4^{n_2}\colon n_1,n_2\geq 0\}$ is a linear CFL

Case 2.b. x_2 and x_3 do not have the same primitive root A type of marked concatenation

The Dyck loop is the intersection of two linear CFL $\{x_1^{n_1}x_2^{n_2}x_4^{n_2}:n_1,n_2 \ge 0\} = \\ \{x_1^{n_1}x_2^{n_1}x_3^mx_4^p:n_1,m,p \ge 0\} \cap \{x_1^mx_2^px_3^{n_2}x_4^{n_2}:n_2,m,p \ge 0\}$ Case 2.c. x_2 and x_3 have the same primitive root but not x_1 , x_2 and x_3 , x_4 The critical case

 $\{x_1^{n_1}x_2^{n_1}x_3^{n_2}x_4^{n_2}\colon n_1, n_2 \geq 0\} = \{x_1^{n_1}z^{r\,n_1+s\,n_2}x_4^{n_2}\colon n_1, n_2 \geq 0\}$

2-Dyck loops are real time OCA

Dyck loops of shape $\{x_1^{n_1}z^{r\,n_1+s\,n_2}x_4^{n_2}\colon n_1,n_2\geq 0\}$ with x_1 and z having distinct primitive roots as well as z and x_4

- The Čulík's OCA recognizes in real time $\{a^{n_1}b^{n_1+n_2}c^{n_2}\colon n_1,n_2\geq 0\}$ with a, b, c distinct letters
- By way of geometric transformations of the Čulík's OCA, we construct real time OCAs which recognize the slight variants: {aⁿ¹b^{r n1+s n2}cⁿ²: n1, n2 ≥ 0}
- Making use of Okhotin's equivalence, we translate these OCAs in terms of linear conjunctive grammars
- Let h be the homomorphism $h(a) = x_1$, h(b) = z, $h(c) = x_4$. Providing that h(a) and h(b), as well as h(b) and h(c), have distinct primitive roots, we can modify the previous linear conjunctive grammars to generate $h(\{a^{n_1}b^{rn_1+sn_2}c^{n_2}: n_1, n_2 \ge 0\}) = \{x_1^{n_1}z^{rn_1+sn_2}x_4^{n_2}: n_1, n_2 \ge 0\}$

Conclusion

Linear-slender CFL are real time OCA languages

Three ingredients:

- the characterization of poly-slender CFL in terms of Dyck loops given by Ilie, Rozenberg and Salomaa
- the Čulík's OCA which recognizes in real time the language $\{a^nb^{n+m}a^m: n, m \ge 0\}$
- the Okhotin's characterization of real time OCA by linear conjunctive grammars

Conclusion

Question: Are poly-slender CFL real time OCA languages?

A preliminary step:

How to extend the Čulík's algorithm for the bounded versions of the language of words whose the number of a's equals the number of b's?

Bibliography

🔋 Karel Čulík II.

Variations of the firing squad problem and applications. Information Processing Letters, 30(3):152 - 157, 1989.

Lucian Ilie, Grzegorz Rozenberg, and Arto Salomaa.
A characterization of poly-slender context-free languages.
Theoretical Informatics and Applications, 34(1):77–86, 2000.

Alexander Okhotin.

On the equivalence of linear conjunctive grammars and trellis automata.

RAIRO Informatique Théorique et Applications, 38(1):69–88, 2004.