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Cellular automata as topological dynamical systems

Definition
Let A be finite with |A| > 2, then AZ together with the metric

d(X, y) = 27 mm{‘kl LD, Xg#yé}

is a compact metric space homeomorphic to the Cantor set.

Theorem (Curtis,Hedlund,Lyndon (1969))

A map F : AL — AZ is a cellular automaton (it is defined by a
block map), if it is continuous and commuting with the left shift o.



Isomorphisms of topological dynamical systems

» F, H continuous

» ® homeomorphism

Properties preserved by conjugation

» Sensitivity
» Expansivity
> Entropy

| S



Strong conjugacies

For which homeomorphisms ® : AZ — AZ is ®~1o F o ® a cellular
automaton whenever F is a cellular automaton?



Strong conjugacies

For which homeomorphisms ® : AZ — AZ is @1 o F o ® a cellular
automaton whenever F is a cellular automaton?

Theorem
When ® is either
1. a cellular automaton,
2. the reflection 7: A* — A%, 7(x); := x_; or

3. the composition of a cellular automaton and 7.

Definition
Two CA are strongly conjugate if they are conjugate by one of

(@) = (o).



Periodic points under conjugacies

Let Per,(F) be the set of n-periodic points of F and let I5\e/rn(F)
be the set of minimally n-periodic points.

x € Perp(F) & F"(x) = x
< O(F"(x)) = d(x)
& HI(®(x) = o(x)
& O(x) € Pery(H)

= |Per,(H)| = |Perp(F)|



n-periodic points vs. minimally n-periodic points

If |Per,(F)| is finite for all n (e.g. for subshifts), we can
reconstruct |Per,(F)| from |Per,(®)| by

|Per,(F)| = Zu )|Perg(F)|.
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Impossible, when |Per,(F)| € N, e.g. |Peri(F)| = |R| implies
|Per,(F)| = |R| for all n € N.



n-periodic points vs. minimally n-periodic points

If |Per,(F)| is finite for all n (e.g. for subshifts), we can
reconstruct |Per,(F)| from |Per,(®)| by

]Per,, )| = Z,u )|Perq(F)].

Impossible, when |Per,(F)| € N, e.g. |Peri(F)| = |R| implies
|Per,(F)| = |R| for all n € N.

How can one determine \Is\e/r,,(F)|?



Higher block representations

Take wag(x_1,x0,x1) = x_1(1 ® x1 ® xpx1) B x0, N = 2.

x ....1.». o0 O 1 O 1 0 0 11
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Higher block representations

Take W28(X_1,X0,X1) = X_1(]_ Dx1 D XOX1) @® xg, n = 2.

x ... 1 1 0 0 1 0 1 0 0 1 1

wos(y) 1 0 1 0 1 1 0

wis(7) 1 0 1 0 1 0 0



Higher block representations

Take W28(X_1,X0,X1) = X_1(]_ Dx1 D XOX1) @® xg, n = 2.

x ... 1 1 0 0 1 0 1 0 0 11
(17 1] [0] [0] (1] [0] [1]
1 0 0 1 0 1 0
vy 0 0 1 0 1 0 0
0 1 0 1 0 0 1
1 0 1 0 0 1 1

wos(y) 1 0 1 0 1 1 0

wa(y) 1 0 1 0 1 0 0



Periodic points as SFTs

We consider a labelled De-Bruijn-Graph G

(r is the radius of F, f the corresponding block map)

V(G) = {0, 1},

E(G):={(e1,..-,em),(e2,...,e2m+1); (e1,...,en11) € {0, 1}2m+1},
p(e) = {t € {1’ ceey n} ) ft(ela ceey e2nr+1)(n—t)r+1 = enrJrl}v

remove all edges where n ¢ p(e) and finally remove all edges not
appearing in bi-infinite pathes.



Periodic points as SFTs

We consider a labelled De-Bruijn-Graph G
(r is the radius of F, f the corresponding block map)

V(G) == {0,1}*™,
E(G) = {(617 ey len), (62, ey ezrn+1) ’ (e]_, ey 62n+1) c {0’ 1}2rn+1}’
p(e) :={te{l,....n}; ft(ela ceey e2nr+1)(n—t)r+1 = enrt1},

remove all edges where n ¢ p(e) and finally remove all edges not
appearing in bi-infinite pathes. With

Pera(G) := {(e1)iez € Path(G) ; (] ple;) = {n}}

iEZ

gives us |Per,(G)| = |Pera(F)|.



The labelled De-Bruijn-Graph G for wog and n = 2
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The labelled De-Bruijn-Graph G for wog and n = 2
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The labelled De-Bruijn-Graph G for wog and n = 2
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The strong components digraph S(G)

Definition

Let S(G) be the graph whose vertices are the strongly connected
components of G and an edge from s to t, if there is an edge in G
starting in s and ending in t.

Definition
For s1,...,sk € V(S(G)) let Path(sy,...,sx) C Path(G) be all
biinfinite pathes running through s, ..., sk in that order.



Example of S(G)

? () ——(»)
A 1T s

|Path(si, )| =0
|Path(s1, 52, s3)| = |R)|
|Path(s3)| = 4




Substracting SFTs

Theorem
If there is a point with minimal period n in Path(si, ..., sk), then

|Path(sy, . .., sk) N Pery(G)| = |Path(sy, . . ., si)|



Determining |I5Er,,(G)]

Algorithm

1. Decide if there is a path v € Path(sy,...,sx) N Isgrn(G):
Are there edges s; > s, 3 - - 3! s with

n—1

() p(er) N ﬂ () ple) = {n}?
i=1 J=1e€cE(s;)
2. Determine |Path(sy, ..., sk)| (if s1 and sk are not vertices):
|Path(si, ..., sk)| = |R| < one of the s; is not a cycle,

|Path(si,...,sk)| = |N| < k > 2 and all s; are cycles,
|Path(s)| = ¢ < s is a cycle of length ¢ > 0.



The labelled De-Bruijn-Graph G for wog and n = 2
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The labelled De-Bruijn-Graph G for w,og and n =2
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The labelled De-Bruijn-Graph G for w,og and n =2
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1001
{1,2} < {1,2} {1,2}

Path(Sl,Sz) = @
Path(s1) N F,’grz(f) =0
|Path(s1, 52, 53) N Pera(f)| = [R|
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Using the topology

Definition
Let X be a metric space and B C X. Define

D(B) = {x € X ; x is an accumulation point of Y}

=B\ {x}
xeB

Lemma
|D(Per,(F))| is a conjugacy invariant.
Lemma
Let v € Path(s,...,sk) C Path(G), then tfae.

» v & D(Path(G)),

> there is a finite subpath of vy that can not be extended to a

path in G different from =y,

» 51 and s, are cycles and have no outgoing respectively
incoming edges in S(G).
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Conjugate, but not strongly conjugate

Definition
v:{0,1}2 = {0,1}4, v(x)i=1-x;.

Lemma
The only CA conjugate to o are o and o~ 1.

Corollary

Wi70 = 0 and Wis = o o v are conjugate, but not strongly
conjugate. The conjugacy is given by flipping every second bit.
Rule 77 and 232, respectively 23 and 178 are conjugate by the
same homeomorphism.



The bipermutive CAs wog, wigs and wisg

Theorem (Kurka, Nasu)

Bipermutive CA with radius r are conjugate to the one-sided full
shift on |A]*" symbols.




The bipermutive CAs wog, wigs and wisg

Theorem (Kurka, Nasu)

Bipermutive CA with radius r are conjugate to the one-sided full
shift on |A|?" symbols.




Further Invariants

The remaining CA can be distinguished by the following invariants.
|F~*(Per1(F))]

Fix,(F) := |{x € Per1(F); |F71(x)| = k}|

F({0,1}%) = w(F)?

D(F~Y(Per1(F)))

{IF7100l: x € {0,117}

v

v

v

v

v



Final Remarks

Results about the 256 elementary CA

> Exactly 83 equivalence classes up to topological conjugacy.

» Rule 4 and rule 12 are not top. conjugate but conjugate on
their eventual image.

> Rule 200 and rule 76 are not top. conjugate but conjugate if
we neglect the topology.



Final Remarks

Results about the 256 elementary CA

> Exactly 83 equivalence classes up to topological conjugacy.

» Rule 4 and rule 12 are not top. conjugate but conjugate on
their eventual image.

> Rule 200 and rule 76 are not top. conjugate but conjugate if
we neglect the topology.

Decidability

» Counting periodic points does not work in higher dimensions.

» Deciding conjugacy on the eventual image can decide
nilpotency, therefore it is undecidable already in dimension
one.

» Maybe deciding top. conjugacy for CA is also undecidable.
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