Shrinking One-Way Cellular Automata

Martin Kutrib Andreas Malcher Matthias Wendlandt

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany email: {kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

AUTOMATA 2015, Turku, Finland

Cellular Automata and Iterative Arrays

A two-way cellular automaton (CA):

$$\texttt{\#} \bullet \texttt{q}_1 \bullet \texttt{q}_2 \bullet \texttt{q}_3 \bullet \texttt{q}_4 \bullet \texttt{q}_5 \bullet \texttt{q}_6 \bullet \texttt{\#}$$

Cellular Automata and Iterative Arrays

A two-way cellular automaton (CA):

$$\texttt{\#} \bullet q_1 \bullet q_2 \bullet q_3 \bullet q_4 \bullet q_5 \bullet q_6 \bullet \texttt{\#}$$

A one-way cellular automaton (OCA):

Cellular Automata and Iterative Arrays

A two-way cellular automaton (CA):

$$\texttt{\#} \bullet q_1 \bullet q_2 \bullet q_3 \bullet q_4 \bullet q_5 \bullet q_6 \bullet \texttt{\#}$$

A one-way cellular automaton (OCA):

An iterative array (IA) is a cellular automaton with sequential input mode.

$$\begin{array}{c} \hline q_0 \longleftrightarrow \cdots \\ & & \\$$

Input
$$u = a_1 a_2 \cdots a_6 \in A^+$$

Input
$$u = a_1 a_2 \cdots a_6 \in A^+$$

 → u ∈ A⁺ is accepted, if there exists a time step at which the first cell enters an accepting state.

Input
$$u = a_1 a_2 \cdots a_6 \in A^+$$

- → u ∈ A⁺ is accepted, if there exists a time step at which the first cell enters an accepting state.
- → $L(M) = \{ u \in A^+ \mid u \text{ is accepted by } M \}$

Input
$$u = a_1 a_2 \cdots a_6 \in A^+$$

- → u ∈ A⁺ is accepted, if there exists a time step at which the first cell enters an accepting state.
- → $L(M) = \{ u \in A^+ \mid u \text{ is accepted by } M \}$
- → M has time complexity $t : \mathbb{N} \to \mathbb{N}$, $t(n) \ge n$, if all $u \in L(M)$ are accepted within t(|u|) time steps.

Input
$$u = a_1 a_2 \cdots a_6 \in A^+$$

- → u ∈ A⁺ is accepted, if there exists a time step at which the first cell enters an accepting state.
- → $L(M) = \{ u \in A^+ \mid u \text{ is accepted by } M \}$
- → M has time complexity $t : \mathbb{N} \to \mathbb{N}$, $t(n) \ge n$, if all $u \in L(M)$ are accepted within t(|u|) time steps.
- → $\mathscr{L}_t(CA) = \{ L \mid L \text{ is accepted with time complexity } t \}$

Important Language Classes

- → realtime-CA languages $\mathscr{L}_{rt}(CA)$ (t(|u|) = |u|)
- → lineartime-CA languages $\mathscr{L}_{lt}(CA)$ $(t(|u|) = m \cdot |u|, m \in \mathbb{Q}, m \ge 1)$

The language classes for one-way cellular automata $\mathscr{L}_{rt}(\mathsf{OCA})$, $\mathscr{L}_{lt}(\mathsf{OCA})$ are defined analogously.

Important Language Classes

- → realtime-CA languages $\mathscr{L}_{rt}(CA)$ (t(|u|) = |u|)
- → lineartime-CA languages $\mathscr{L}_{lt}(CA)$ $(t(|u|) = m \cdot |u|, m \in \mathbb{Q}, m \ge 1)$

The language classes for one-way cellular automata $\mathscr{L}_{rt}(\mathsf{OCA})$, $\mathscr{L}_{lt}(\mathsf{OCA})$ are defined analogously.

For iterative arrays

- → realtime-IA languages $\mathscr{L}_{rt}(IA)$ (t(|u|) = |u| + 1)
- → lineartime-IA languages $\mathscr{L}_{lt}(IA)$ $(t(|u|) = m \cdot |u|, m \in \mathbb{Q}, m \ge 1)$

$$\begin{array}{rcl} \mathrm{DCS} &=& \mathscr{L}(\mathrm{CA}) &=& \mathscr{L}(\mathrm{IA}) \\ && & \cup \\ && & \cup \\ \mathrm{CF} &\subset & \mathscr{L}(\mathrm{OCA}) && \cup \\ && & \cup \\ && & \mathcal{L}_{lt}(\mathrm{CA}) &=& \mathscr{L}_{lt}(\mathrm{IA}) \\ && & \cup \\ \mathrm{DCF} &\subset & \mathscr{L}_{rt}(\mathrm{CA}) &\supset & \mathscr{L}_{rt}(\mathrm{IA}) &\supset & \mathrm{DCF}_{\lambda} \\ && & & & \\ && & & \mathcal{L}_{lt}(\mathrm{OCA})^{R} \\ && & & & \\ \mathrm{REG} &\subset & \mathrm{LCF} &\subset & \mathscr{L}_{rt}(\mathrm{OCA}) \end{array}$$

The language classes $\mathscr{L}_{rt}(\mathsf{OCA})$ and $\mathscr{L}_{rt}(\mathsf{IA})$ are incomparable. Both CF and $\mathscr{L}_{rt}(\mathsf{OCA})$ and CF and $\mathscr{L}_{rt}(\mathsf{IA})$ are incomparable.

A shrinking one-way cellular automaton (SOCA) is a system $\langle S,F,A,\texttt{\#},\delta\rangle,$ where

- → S is the finite set of cell states,
- → $F \subseteq S$ is the set of accepting states,
- → $A \subseteq S$ is the finite set of input symbols,
- → # $\notin S$ is the permanent boundary symbol,
- → $\delta: S \times S_{\#} \rightarrow S \cup \{$ dissolve $\}$ is the local transition function.

A shrinking one-way cellular automaton (SOCA) is a system $\langle S,F,A,\texttt{\#},\delta\rangle,$ where

- → S is the finite set of cell states,
- → $F \subseteq S$ is the set of accepting states,
- → $A \subseteq S$ is the finite set of input symbols,
- → # \notin S is the permanent boundary symbol,
- → $\delta: S \times S_{\#} \rightarrow S \cup \{ \text{dissolve} \}$ is the local transition function.

A shrinking one-way cellular automaton (SOCA) is a system $\langle S, F, A, \#, \delta \rangle$, where

- → S is the finite set of cell states,
- → $F \subseteq S$ is the set of accepting states,
- → $A \subseteq S$ is the finite set of input symbols,
- → # $\notin S$ is the permanent boundary symbol,
- → $\delta: S \times S_{\#} \rightarrow S \cup \{ \text{dissolve} \}$ is the local transition function.

A shrinking one-way cellular automaton (SOCA) is a system $\langle S, F, A, \#, \delta \rangle$, where

- → S is the finite set of cell states,
- → $F \subseteq S$ is the set of accepting states,
- → $A \subseteq S$ is the finite set of input symbols,
- → # \notin S is the permanent boundary symbol,
- → $\delta: S \times S_{\#} \rightarrow S \cup \{ \text{dissolve} \}$ is the local transition function.

A shrinking one-way cellular automaton (SOCA) is a system $\langle S, F, A, \#, \delta \rangle$, where

- \rightarrow S is the finite set of cell states,
- → $F \subseteq S$ is the set of accepting states,
- → $A \subseteq S$ is the finite set of input symbols,
- → # \notin S is the permanent boundary symbol,
- → $\delta: S \times S_{\#} \rightarrow S \cup \{ \text{dissolve} \}$ is the local transition function.

A shrinking one-way cellular automaton (SOCA) is a system $\langle S, F, A, \#, \delta \rangle$, where

- → S is the finite set of cell states,
- → $F \subseteq S$ is the set of accepting states,
- → $A \subseteq S$ is the finite set of input symbols,
- → # \notin S is the permanent boundary symbol,
- → $\delta: S \times S_{\#} \rightarrow S \cup \{ \text{dissolve} \}$ is the local transition function.

We define realtime-SOCA languages $\mathscr{L}_{rt}(SOCA)$ with t(|u|) = |u| as usual.

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

\$	a	b	b	a	b	b	a	\overline{a}	#
----	---	---	---	---	---	---	---	----------------	---

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

\$	a	b	b	a	b	b	a	\overline{a}	#
----	---	---	---	---	---	---	---	----------------	---

\$	a	b	b	a	b	b	a'	#
----	---	---	---	---	---	---	----	---

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

\$	a	b	b	a	b	b	a	\overline{a}	#
----	---	---	---	---	---	---	---	----------------	---

\$	a	b	b	a	b	b	a'	#
----	---	---	---	---	---	---	----	---

\$	a	b	b	a	b	\overline{a}	#
----	---	---	---	---	---	----------------	---

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

\$	a	b	b	a	b	b	a	\overline{a}	#
----	---	---	---	---	---	---	---	----------------	---

\$	a	b	b	a	b	b	a'	#
----	---	---	---	---	---	---	----	---

\$	a	b	b	a	b	\overline{a}	#
----	---	---	---	---	---	----------------	---

\$	a	b	b	a	#
----	---	---	---	---	---

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

\$	a	b	b	a	b	b	a	\overline{a}	#
----	---	---	---	---	---	---	---	----------------	---

\$	a	b	b	a	b	b	a'	#
----	---	---	---	---	---	---	----	---

\$	a	b	b	a	b	\overline{a}	#
----	---	---	---	---	---	----------------	---

\$	a	b	b	a	#
----	---	---	---	---	---

\$ a b b a #

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

\$ a b	b	\overline{a}	#
--------	---	----------------	---

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

	\$	a	b	b	\overline{a}	#
--	----	---	---	---	----------------	---

\$	a	b	#
----	---	---	---

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

\$ a b b a #

\$	a	b	#
----	---	---	---

\$	a	\overline{b}	#
----	---	----------------	---

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

|--|

\$ a	b	#
------	---	---

\$	a	\overline{b}	#
----	---	----------------	---

\$	#
----	---

$$L = \{ \$w \mid w \in \{a, b\}^* \text{ and } |w|_a = |w|_b \} \in \mathscr{L}_{rt}(\mathsf{SOCA}).$$

\$ <i>a b b a #</i>	\$	a	b	b	\overline{a}	#
---------------------	----	---	---	---	----------------	---

\$	a	b	#
----	---	---	---

\$	a	\overline{b}	#
----	---	----------------	---

\$	#
----	---

acc	#
-----	---

A valuable tool concerns embeddings. Let $L \subseteq A^*$, $\$ \notin A$, and emb : $A^* \to A^*_{\$}$, where emb(a) = a\$ for $a \in A$.

A valuable tool concerns embeddings. Let $L \subseteq A^*$, $\$ \notin A$, and emb : $A^* \to A^*_{\$}$, where emb(a) = a\$ for $a \in A$.

Lemma

Let $r : \mathbb{N} \to \mathbb{N}$ be an increasing function so that $r(O(n)) \leq O(r(n))$. A language L belongs to the family $\mathscr{L}_{n+r(n)}(\text{OCA})$ if and only if $\operatorname{emb}(L)$ belongs to $\mathscr{L}_{n+r(n)}(\text{OCA})$.

A valuable tool concerns embeddings. Let $L \subseteq A^*$, $\notin A$, and emb : $A^* \to A^*_{\$}$, where emb(a) = a\$ for $a \in A$.

Lemma

Let $r : \mathbb{N} \to \mathbb{N}$ be an increasing function so that $r(O(n)) \leq O(r(n))$. A language L belongs to the family $\mathscr{L}_{n+r(n)}(\text{OCA})$ if and only if emb(L) belongs to $\mathscr{L}_{n+r(n)}(\text{OCA})$.

→ Let M be an OCA accepting emb(L). In an OCA accepting L each cell simulates two adjacent cells of M and the OCA is finally sped up suitably.

A valuable tool concerns embeddings. Let $L \subseteq A^*$, $\notin A$, and emb : $A^* \to A^*_{\$}$, where emb(a) = a\$ for $a \in A$.

Lemma

Let $r : \mathbb{N} \to \mathbb{N}$ be an increasing function so that $r(O(n)) \leq O(r(n))$. A language L belongs to the family $\mathscr{L}_{n+r(n)}(\text{OCA})$ if and only if $\operatorname{emb}(L)$ belongs to $\mathscr{L}_{n+r(n)}(\text{OCA})$.

- → Let M be an OCA accepting emb(L). In an OCA accepting L each cell simulates two adjacent cells of M and the OCA is finally sped up suitably.
- → Let M be an OCA accepting L. An OCA accepting emb(L) is first sped up suitably. Then, two adjacent cells simulate in two time steps one transition of M.

Lemma

Lemma

Let L be a language from $\mathscr{L}_{lt}(\text{OCA}) \setminus \mathscr{L}_{rt}(\text{OCA})$. Then emb(L) belongs to $\mathscr{L}_{rt}(\text{SOCA})$.

→ $L \in \mathscr{L}_{lt}(\text{OCA}) \setminus \mathscr{L}_{rt}(\text{OCA})$ can be sped up to be accepted in time 2n - 2.

Lemma

- → $L \in \mathscr{L}_{lt}(\text{OCA}) \setminus \mathscr{L}_{rt}(\text{OCA})$ can be sped up to be accepted in time 2n 2.
- → An OCA for emb(L) checks in the first time step the correct format of the input.

Lemma

- → $L \in \mathscr{L}_{lt}(\text{OCA}) \setminus \mathscr{L}_{rt}(\text{OCA})$ can be sped up to be accepted in time 2n 2.
- → An OCA for emb(L) checks in the first time step the correct format of the input.
- → In the second time step, all \$-cells are dissolved.

Lemma

- → $L \in \mathscr{L}_{lt}(\text{OCA}) \setminus \mathscr{L}_{rt}(\text{OCA})$ can be sped up to be accepted in time 2n 2.
- → An OCA for emb(L) checks in the first time step the correct format of the input.
- → In the second time step, all \$-cells are dissolved.
- \rightarrow In the remaining time, L is simulated.

Lemma

Let L be a language from $\mathscr{L}_{lt}(\text{OCA}) \setminus \mathscr{L}_{rt}(\text{OCA})$. Then emb(L) belongs to $\mathscr{L}_{rt}(\text{SOCA})$.

- → $L \in \mathscr{L}_{lt}(\text{OCA}) \setminus \mathscr{L}_{rt}(\text{OCA})$ can be sped up to be accepted in time 2n 2.
- → An OCA for emb(L) checks in the first time step the correct format of the input.
- → In the second time step, all \$-cells are dissolved.
- \rightarrow In the remaining time, L is simulated.

Theorem

Let L be a language from $\mathscr{L}_{lt}(\text{OCA}) \setminus \mathscr{L}_{rt}(\text{OCA})$. Then emb(L) belongs to $\mathscr{L}_{rt}(\text{SOCA})$ but does not belong to $\mathscr{L}_{rt}(\text{OCA})$. In particular, the family $\mathscr{L}_{rt}(\text{OCA})$ is properly included in $\mathscr{L}_{rt}(\text{SOCA})$.

Theorem

Let L belong to $\mathscr{L}_{rt}(IA)$. Then $\{w \mid w^R \in L \text{ and } |w| \text{ is even }\}$ is accepted by a real-time SOCA.

Theorem

Let L belong to $\mathscr{L}_{rt}(IA)$. Then $\{w \mid w^R \in L \text{ and } |w| \text{ is even }\}$ is accepted by a real-time SOCA.

→ Embedding of the two-way computation into a one-way device.

Theorem

Let L belong to $\mathscr{L}_{rt}(IA)$. Then $\{w \mid w^R \in L \text{ and } |w| \text{ is even }\}$ is accepted by a real-time SOCA.

- → Embedding of the two-way computation into a one-way device.
- → Speed-up of the computation.

Theorem

Let L belong to $\mathscr{L}_{rt}(IA)$. Then $\{w \mid w^R \in L \text{ and } |w| \text{ is even }\}$ is accepted by a real-time SOCA.

- → Embedding of the two-way computation into a one-way device.
- → Speed-up of the computation.
- → Dissolving of cells to gain additional time.

Theorem

Let L belong to $\mathscr{L}_{rt}(IA)$. Then $\{w \mid w^R \in L \text{ and } |w| \text{ is even }\}$ is accepted by a real-time SOCA.

- → Embedding of the two-way computation into a one-way device.
- → Speed-up of the computation.
- → Dissolving of cells to gain additional time.

Theorem

Let L belong to $\mathscr{L}_{rt}(IA)$. Then $\{w \mid w^R \in L \text{ and } |w| \text{ is odd }\}$ is accepted by a real-time SOCA.

→
$$\{a^{2^n} \mid n \ge 1\} \in \mathscr{L}_{rt}(\text{SOCA})$$

→ {
$$a^{2^n} | n \ge 1$$
 } ∈ $\mathscr{L}_{rt}(\text{SOCA})$
→ { $a^p | p > 2$ and p is prime } ∈ $\mathscr{L}_{rt}(\text{SOCA})$

→ {
$$a^{2^n} \mid n \geq 1$$
 } ∈ $\mathscr{L}_{rt}(\text{SOCA})$
→ { $a^p \mid p > 2$ and p is prime } ∈ $\mathscr{L}_{rt}(\text{SOCA})$
→ { $w \mid w \in \{a, b\}^*$ and $|w|_a = |w|_b$ }

→ {
$$a^{2^n} | n \ge 1$$
 } ∈ \mathscr{L}_{rt} (SOCA)
→ { $a^p | p > 2$ and p is prime } ∈ \mathscr{L}_{rt} (SOCA
→ { $w | w \in \{a, b\}^*$ and $|w|_a = |w|_b$ }

Theorem

Let $L \subseteq A^*$ be a language from $\mathscr{L}_{rt}(IA)$ and $\$ \notin A$ be a letter. Then $\{\$w \mid w^R \in L\}$ is accepted by a real-time SOCA.

→ {
$$a^{2^n} | n \ge 1$$
} ∈ \mathscr{L}_{rt} (SOCA)
→ { $a^p | p > 2$ and p is prime} ∈ \mathscr{L}_{rt} (SOCA)
→ { $w | w \in \{a, b\}^*$ and $|w|_a = |w|_b$ }

Theorem

Let $L \subseteq A^*$ be a language from $\mathscr{L}_{rt}(IA)$ and $\$ \notin A$ be a letter. Then { $\$w \mid w^R \in L$ } is accepted by a real-time SOCA.

→ Remember $\mathsf{DCF}_{\lambda} \subset \mathscr{L}_{rt}(\mathrm{IA}).$

→ Let M be an SOCA and $f : \mathbb{N} \to \mathbb{N}$ be an increasing function.

- \clubsuit Let M be an SOCA and $f:\mathbb{N}\to\mathbb{N}$ be an increasing function.
- → If all w ∈ L(M) are accepted with computations where the number of dissolved cells is bounded by f(|w|), then M is said to be dissolving bounded by f.

- \clubsuit Let M be an SOCA and $f:\mathbb{N}\to\mathbb{N}$ be an increasing function.
- → If all w ∈ L(M) are accepted with computations where the number of dissolved cells is bounded by f(|w|), then M is said to be dissolving bounded by f.
- → The corresponding class of SOCA is denoted by f-SOCA.

- \clubsuit Let M be an SOCA and $f:\mathbb{N}\to\mathbb{N}$ be an increasing function.
- → If all w ∈ L(M) are accepted with computations where the number of dissolved cells is bounded by f(|w|), then M is said to be dissolving bounded by f.
- → The corresponding class of SOCA is denoted by f-SOCA.

Theorem

Let M be an f-SOCA working in real time. Then an equivalent conventional OCA M' working in time n + f(n) can effectively be constructed.

- \clubsuit Let M be an SOCA and $f:\mathbb{N}\to\mathbb{N}$ be an increasing function.
- → If all w ∈ L(M) are accepted with computations where the number of dissolved cells is bounded by f(|w|), then M is said to be dissolving bounded by f.
- → The corresponding class of SOCA is denoted by f-SOCA.

Theorem

Let M be an f-SOCA working in real time. Then an equivalent conventional OCA M' working in time n + f(n) can effectively be constructed.

- → Freeze cells instead of dissolving them.
- → Slow down the computation.

→ What about the other way around?

- → What about the other way around?
- → Is there a general approach to trade time for dissolving of cells?

- → What about the other way around?
- → Is there a general approach to trade time for dissolving of cells?
- → There exists an infinite time hierarchy L_{n+r₂(n)}(OCA) ⊂ L_{n+r₁(n)}(OCA) in between real-time and linear-time.

- → What about the other way around?
- → Is there a general approach to trade time for dissolving of cells?
- → There exists an infinite time hierarchy L_{n+r2(n)}(OCA) ⊂ L_{n+r1(n)}(OCA) in between real-time and linear-time.

Theorem

Let $r_1, r_2 : \mathbb{N} \to \mathbb{N}$ be two increasing functions. If r_1^{-1} is OCAconstructible, $r_2(O(n)) \leq O(r_2(n))$, and $r_2 \cdot \log(r_2) \in o(r_1)$, then

 $\mathscr{L}_{rt}(r_2$ -SOCA) $\subset \mathscr{L}_{rt}(r_1$ -SOCA).

Steps of the proof:

→ Let L_{r_1} be the witness language of the time hierarchy.

- → Let L_{r_1} be the witness language of the time hierarchy.
- → Define L_{\$,r1} such that exactly one \$ is inserted after each of the rightmost r₁(|w|) symbols of w ∈ L_{r1}.

- → Let L_{r_1} be the witness language of the time hierarchy.
- → Define L_{\$,r1} such that exactly one \$ is inserted after each of the rightmost r₁(|w|) symbols of w ∈ L_{r1}.
- → Show that $L_{\$,r_1}$ is accepted by a real-time r_1 -SOCA.

- → Let L_{r_1} be the witness language of the time hierarchy.
- → Define L_{\$,r1} such that exactly one \$ is inserted after each of the rightmost r₁(|w|) symbols of w ∈ L_{r1}.
- → Show that $L_{\$,r_1}$ is accepted by a real-time r_1 -SOCA.
- → Assume that $L_{\$,r_1}$ is accepted by a real-time r_2 -SOCA.

- → Let L_{r_1} be the witness language of the time hierarchy.
- → Define L_{\$,r1} such that exactly one \$ is inserted after each of the rightmost r₁(|w|) symbols of w ∈ L_{r1}.
- → Show that $L_{\$,r_1}$ is accepted by a real-time r_1 -SOCA.
- → Assume that $L_{\$,r_1}$ is accepted by a real-time r_2 -SOCA.
- → Then, $L_{\$,r_1}$ is accepted by an $n + r_2(n)$ -time OCA.

- → Let L_{r_1} be the witness language of the time hierarchy.
- → Define L_{\$,r1} such that exactly one \$ is inserted after each of the rightmost r₁(|w|) symbols of w ∈ L_{r1}.
- → Show that $L_{\$,r_1}$ is accepted by a real-time r_1 -SOCA.
- → Assume that $L_{\$,r_1}$ is accepted by a real-time r_2 -SOCA.
- → Then, $L_{\$,r_1}$ is accepted by an $n + r_2(n)$ -time OCA.
- → Construct an $n + r_2(n)$ -time OCA accepting L_{r_1} .

Steps of the proof:

- → Let L_{r_1} be the witness language of the time hierarchy.
- → Define L_{\$,r1} such that exactly one \$ is inserted after each of the rightmost r₁(|w|) symbols of w ∈ L_{r1}.
- → Show that $L_{\$,r_1}$ is accepted by a real-time r_1 -SOCA.
- → Assume that $L_{\$,r_1}$ is accepted by a real-time r_2 -SOCA.
- → Then, $L_{\$,r_1}$ is accepted by an $n + r_2(n)$ -time OCA.
- → Construct an $n + r_2(n)$ -time OCA accepting L_{r_1} .

Applications:

→ $\mathscr{L}_{rt}(n^p$ -SOCA) $\subset \mathscr{L}_{rt}(n^q$ -SOCA) for two rational numbers $0 \le p < q \le 1$.

Steps of the proof:

- → Let L_{r_1} be the witness language of the time hierarchy.
- → Define L_{\$,r1} such that exactly one \$ is inserted after each of the rightmost r₁(|w|) symbols of w ∈ L_{r1}.
- → Show that $L_{\$,r_1}$ is accepted by a real-time r_1 -SOCA.
- → Assume that $L_{\$,r_1}$ is accepted by a real-time r_2 -SOCA.
- → Then, $L_{\$,r_1}$ is accepted by an $n + r_2(n)$ -time OCA.
- → Construct an $n + r_2(n)$ -time OCA accepting L_{r_1} .

Applications:

- → $\mathscr{L}_{rt}(n^p$ -SOCA) $\subset \mathscr{L}_{rt}(n^q$ -SOCA) for two rational numbers $0 \le p < q \le 1$.
- → L_{rt}(log^[j]-SOCA) ⊂ L_{rt}(log^[i]-SOCA) where log^[i] denotes the *i*-fold iterated logarithms and 0 < *i* < *j* are integers.