
Shrinking One-Way Cellular Automata

Martin Kutrib Andreas Malcher Matthias Wendlandt

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

email: {kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

AUTOMATA 2015, Turku, Finland

Cellular Automata and Iterative Arrays

A two-way cellular automaton (CA):

q1 q2 q3 q4 q5 q6 #-� -� -� -� -� -� -�

A one-way cellular automaton (OCA):

q1 q2 q3 q4 q5 q6 #� � � � � � �

An iterative array (IA) is a cellular automaton with sequential
input mode.

q0 q0 q0 q0 q0 q0 q0 q0 . . .

a1a2a3 · · · an#

Cellular Automata and Iterative Arrays

A two-way cellular automaton (CA):

q1 q2 q3 q4 q5 q6 #-� -� -� -� -� -� -�

A one-way cellular automaton (OCA):

q1 q2 q3 q4 q5 q6 #� � � � � � �

An iterative array (IA) is a cellular automaton with sequential
input mode.

q0 q0 q0 q0 q0 q0 q0 q0 . . .

a1a2a3 · · · an#

Cellular Automata and Iterative Arrays

A two-way cellular automaton (CA):

q1 q2 q3 q4 q5 q6 #-� -� -� -� -� -� -�

A one-way cellular automaton (OCA):

q1 q2 q3 q4 q5 q6 #� � � � � � �

An iterative array (IA) is a cellular automaton with sequential
input mode.

q0 q0 q0 q0 q0 q0 q0 q0 . . .

a1a2a3 · · · an#

Recognizing Formal Languages With Cellular Automata

Input u = a1a2 · · · a6 ∈ A+

t = 0 # a1 a2 a3 a4 a5 a6 #-� -� -� -� -� -� -�

t = 1 # q11 q12 q13 q14 q15 q16 #-� -� -� -� -� -� -�

...
...

...

t = n # f qn2 qn3 qn4 qn5 qn6 #-� -� -� -� -� -� -�

Ü u ∈ A+ is accepted, if there exists a time step at which the
first cell enters an accepting state.

Ü L(M) = {u ∈ A+ | u is accepted by M }
Ü M has time complexity t : N→ N, t(n) ≥ n, if all u ∈ L(M)

are accepted within t(|u|) time steps.

Ü Lt(CA) = {L | L is accepted with time complexity t }

Recognizing Formal Languages With Cellular Automata

Input u = a1a2 · · · a6 ∈ A+

t = 0 # a1 a2 a3 a4 a5 a6 #-� -� -� -� -� -� -�

t = 1 # q11 q12 q13 q14 q15 q16 #-� -� -� -� -� -� -�

...
...

...

t = n # f qn2 qn3 qn4 qn5 qn6 #-� -� -� -� -� -� -�

Ü u ∈ A+ is accepted, if there exists a time step at which the
first cell enters an accepting state.

Ü L(M) = {u ∈ A+ | u is accepted by M }
Ü M has time complexity t : N→ N, t(n) ≥ n, if all u ∈ L(M)

are accepted within t(|u|) time steps.

Ü Lt(CA) = {L | L is accepted with time complexity t }

Recognizing Formal Languages With Cellular Automata

Input u = a1a2 · · · a6 ∈ A+

t = 0 # a1 a2 a3 a4 a5 a6 #-� -� -� -� -� -� -�

t = 1 # q11 q12 q13 q14 q15 q16 #-� -� -� -� -� -� -�

...
...

...

t = n # f qn2 qn3 qn4 qn5 qn6 #-� -� -� -� -� -� -�

Ü u ∈ A+ is accepted, if there exists a time step at which the
first cell enters an accepting state.

Ü L(M) = {u ∈ A+ | u is accepted by M }

Ü M has time complexity t : N→ N, t(n) ≥ n, if all u ∈ L(M)
are accepted within t(|u|) time steps.

Ü Lt(CA) = {L | L is accepted with time complexity t }

Recognizing Formal Languages With Cellular Automata

Input u = a1a2 · · · a6 ∈ A+

t = 0 # a1 a2 a3 a4 a5 a6 #-� -� -� -� -� -� -�

t = 1 # q11 q12 q13 q14 q15 q16 #-� -� -� -� -� -� -�

...
...

...

t = n # f qn2 qn3 qn4 qn5 qn6 #-� -� -� -� -� -� -�

Ü u ∈ A+ is accepted, if there exists a time step at which the
first cell enters an accepting state.

Ü L(M) = {u ∈ A+ | u is accepted by M }
Ü M has time complexity t : N→ N, t(n) ≥ n, if all u ∈ L(M)

are accepted within t(|u|) time steps.

Ü Lt(CA) = {L | L is accepted with time complexity t }

Recognizing Formal Languages With Cellular Automata

Input u = a1a2 · · · a6 ∈ A+

t = 0 # a1 a2 a3 a4 a5 a6 #-� -� -� -� -� -� -�

t = 1 # q11 q12 q13 q14 q15 q16 #-� -� -� -� -� -� -�

...
...

...

t = n # f qn2 qn3 qn4 qn5 qn6 #-� -� -� -� -� -� -�

Ü u ∈ A+ is accepted, if there exists a time step at which the
first cell enters an accepting state.

Ü L(M) = {u ∈ A+ | u is accepted by M }
Ü M has time complexity t : N→ N, t(n) ≥ n, if all u ∈ L(M)

are accepted within t(|u|) time steps.

Ü Lt(CA) = {L | L is accepted with time complexity t }

Important Language Classes

Ü realtime-CA languages Lrt(CA) (t(|u|) = |u|)
Ü lineartime-CA languages Llt(CA) (t(|u|) = m · |u|, m ∈ Q,
m ≥ 1)

The language classes for one-way cellular automata Lrt(OCA),
Llt(OCA) are defined analogously.

For iterative arrays

Ü realtime-IA languages Lrt(IA) (t(|u|) = |u|+ 1)

Ü lineartime-IA languages Llt(IA) (t(|u|) = m · |u|, m ∈ Q,
m ≥ 1)

Important Language Classes

Ü realtime-CA languages Lrt(CA) (t(|u|) = |u|)
Ü lineartime-CA languages Llt(CA) (t(|u|) = m · |u|, m ∈ Q,
m ≥ 1)

The language classes for one-way cellular automata Lrt(OCA),
Llt(OCA) are defined analogously.

For iterative arrays

Ü realtime-IA languages Lrt(IA) (t(|u|) = |u|+ 1)

Ü lineartime-IA languages Llt(IA) (t(|u|) = m · |u|, m ∈ Q,
m ≥ 1)

Computational Capacity

DCS = L (CA) = L (IA)

⊆

CF ⊂ L (OCA) ⊆

⊆

Llt(CA) = Llt(IA)

⊆ ⊂

DCF ⊂ Lrt(CA) ⊃ Lrt(IA) ⊃ DCFλ

=
Llt(OCA)R

⊂
REG ⊂ LCF ⊂ Lrt(OCA)

The language classes Lrt(OCA) and Lrt(IA) are incomparable.
Both CF and Lrt(OCA) and CF and Lrt(IA) are incomparable.

Shrinking Cellular Automata – Definition

A shrinking one-way cellular automaton (SOCA) is a system
〈S, F,A, #, δ〉, where

Ü S is the finite set of cell states,

Ü F ⊆ S is the set of accepting states,

Ü A ⊆ S is the finite set of input symbols,

Ü # /∈ S is the permanent boundary symbol,

Ü δ : S × S# → S ∪ {dissolve} is the local transition function.

We define realtime-SOCA languages Lrt(SOCA) with t(|u|) = |u|
as usual.

Shrinking Cellular Automata – Definition

A shrinking one-way cellular automaton (SOCA) is a system
〈S, F,A, #, δ〉, where

Ü S is the finite set of cell states,

Ü F ⊆ S is the set of accepting states,

Ü A ⊆ S is the finite set of input symbols,

Ü # /∈ S is the permanent boundary symbol,

Ü δ : S × S# → S ∪ {dissolve} is the local transition function.

We define realtime-SOCA languages Lrt(SOCA) with t(|u|) = |u|
as usual.

Shrinking Cellular Automata – Definition

A shrinking one-way cellular automaton (SOCA) is a system
〈S, F,A, #, δ〉, where

Ü S is the finite set of cell states,

Ü F ⊆ S is the set of accepting states,

Ü A ⊆ S is the finite set of input symbols,

Ü # /∈ S is the permanent boundary symbol,

Ü δ : S × S# → S ∪ {dissolve} is the local transition function.

We define realtime-SOCA languages Lrt(SOCA) with t(|u|) = |u|
as usual.

Shrinking Cellular Automata – Definition

A shrinking one-way cellular automaton (SOCA) is a system
〈S, F,A, #, δ〉, where

Ü S is the finite set of cell states,

Ü F ⊆ S is the set of accepting states,

Ü A ⊆ S is the finite set of input symbols,

Ü # /∈ S is the permanent boundary symbol,

Ü δ : S × S# → S ∪ {dissolve} is the local transition function.

We define realtime-SOCA languages Lrt(SOCA) with t(|u|) = |u|
as usual.

Shrinking Cellular Automata – Definition

A shrinking one-way cellular automaton (SOCA) is a system
〈S, F,A, #, δ〉, where

Ü S is the finite set of cell states,

Ü F ⊆ S is the set of accepting states,

Ü A ⊆ S is the finite set of input symbols,

Ü # /∈ S is the permanent boundary symbol,

Ü δ : S × S# → S ∪ {dissolve} is the local transition function.

We define realtime-SOCA languages Lrt(SOCA) with t(|u|) = |u|
as usual.

Shrinking Cellular Automata – Definition

A shrinking one-way cellular automaton (SOCA) is a system
〈S, F,A, #, δ〉, where

Ü S is the finite set of cell states,

Ü F ⊆ S is the set of accepting states,

Ü A ⊆ S is the finite set of input symbols,

Ü # /∈ S is the permanent boundary symbol,

Ü δ : S × S# → S ∪ {dissolve} is the local transition function.

We define realtime-SOCA languages Lrt(SOCA) with t(|u|) = |u|
as usual.

Example

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a b b a a #

$ a b b a b b a a #

$ a b b a b b a′ #

$ a b b a b a #

$ a b b a #

$ a b b a #

Example

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a b b a a #

$ a b b a b b a a #

$ a b b a b b a′ #

$ a b b a b a #

$ a b b a #

$ a b b a #

Example

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a b b a a #

$ a b b a b b a a #

$ a b b a b b a′ #

$ a b b a b a #

$ a b b a #

$ a b b a #

Example

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a b b a a #

$ a b b a b b a a #

$ a b b a b b a′ #

$ a b b a b a #

$ a b b a #

$ a b b a #

Example

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a b b a a #

$ a b b a b b a a #

$ a b b a b b a′ #

$ a b b a b a #

$ a b b a #

$ a b b a #

Example

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a b b a a #

$ a b b a b b a a #

$ a b b a b b a′ #

$ a b b a b a #

$ a b b a #

$ a b b a #

Example

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a b b a a #

$ a b b a b b a a #

$ a b b a b b a′ #

$ a b b a b a #

$ a b b a #

$ a b b a #

Example (2)

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a #

$ a b #

$ a b #

$ #

acc #

Example (2)

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a #

$ a b #

$ a b #

$ #

acc #

Example (2)

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a #

$ a b #

$ a b #

$ #

acc #

Example (2)

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a #

$ a b #

$ a b #

$ #

acc #

Example (2)

L = { $w | w ∈ {a, b}∗ and |w|a = |w|b } ∈ Lrt(SOCA).

$ a b b a #

$ a b #

$ a b #

$ #

acc #

Computational Capacity

A valuable tool concerns embeddings. Let L ⊆ A∗, $ /∈ A, and
emb : A∗ → A∗

$
, where emb(a) = a$ for a ∈ A.

Lemma

Let r : N→ N be an increasing function so that r(O(n)) ≤ O(r(n)).
A language L belongs to the family Ln+r(n)(OCA) if and only if
emb(L) belongs to Ln+r(n)(OCA).

Ü Let M be an OCA accepting emb(L). In an OCA accepting
L each cell simulates two adjacent cells of M and the OCA is
finally sped up suitably.

Ü Let M be an OCA accepting L. An OCA accepting emb(L)
is first sped up suitably. Then, two adjacent cells simulate in
two time steps one transition of M .

Computational Capacity

A valuable tool concerns embeddings. Let L ⊆ A∗, $ /∈ A, and
emb : A∗ → A∗

$
, where emb(a) = a$ for a ∈ A.

Lemma

Let r : N→ N be an increasing function so that r(O(n)) ≤ O(r(n)).
A language L belongs to the family Ln+r(n)(OCA) if and only if
emb(L) belongs to Ln+r(n)(OCA).

Ü Let M be an OCA accepting emb(L). In an OCA accepting
L each cell simulates two adjacent cells of M and the OCA is
finally sped up suitably.

Ü Let M be an OCA accepting L. An OCA accepting emb(L)
is first sped up suitably. Then, two adjacent cells simulate in
two time steps one transition of M .

Computational Capacity

A valuable tool concerns embeddings. Let L ⊆ A∗, $ /∈ A, and
emb : A∗ → A∗

$
, where emb(a) = a$ for a ∈ A.

Lemma

Let r : N→ N be an increasing function so that r(O(n)) ≤ O(r(n)).
A language L belongs to the family Ln+r(n)(OCA) if and only if
emb(L) belongs to Ln+r(n)(OCA).

Ü Let M be an OCA accepting emb(L). In an OCA accepting
L each cell simulates two adjacent cells of M and the OCA is
finally sped up suitably.

Ü Let M be an OCA accepting L. An OCA accepting emb(L)
is first sped up suitably. Then, two adjacent cells simulate in
two time steps one transition of M .

Computational Capacity

A valuable tool concerns embeddings. Let L ⊆ A∗, $ /∈ A, and
emb : A∗ → A∗

$
, where emb(a) = a$ for a ∈ A.

Lemma

Let r : N→ N be an increasing function so that r(O(n)) ≤ O(r(n)).
A language L belongs to the family Ln+r(n)(OCA) if and only if
emb(L) belongs to Ln+r(n)(OCA).

Ü Let M be an OCA accepting emb(L). In an OCA accepting
L each cell simulates two adjacent cells of M and the OCA is
finally sped up suitably.

Ü Let M be an OCA accepting L. An OCA accepting emb(L)
is first sped up suitably. Then, two adjacent cells simulate in
two time steps one transition of M .

Computational Capacity (2)

Lemma

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA).

Ü L ∈ Llt(OCA) \Lrt(OCA) can be sped up to be accepted in
time 2n− 2.

Ü An OCA for emb(L) checks in the first time step the correct
format of the input.

Ü In the second time step, all $-cells are dissolved.

Ü In the remaining time, L is simulated.

Theorem

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA) but does not belong to Lrt(OCA). In par-
ticular, the family Lrt(OCA) is properly included in Lrt(SOCA).

Computational Capacity (2)

Lemma

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA).

Ü L ∈ Llt(OCA) \Lrt(OCA) can be sped up to be accepted in
time 2n− 2.

Ü An OCA for emb(L) checks in the first time step the correct
format of the input.

Ü In the second time step, all $-cells are dissolved.

Ü In the remaining time, L is simulated.

Theorem

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA) but does not belong to Lrt(OCA). In par-
ticular, the family Lrt(OCA) is properly included in Lrt(SOCA).

Computational Capacity (2)

Lemma

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA).

Ü L ∈ Llt(OCA) \Lrt(OCA) can be sped up to be accepted in
time 2n− 2.

Ü An OCA for emb(L) checks in the first time step the correct
format of the input.

Ü In the second time step, all $-cells are dissolved.

Ü In the remaining time, L is simulated.

Theorem

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA) but does not belong to Lrt(OCA). In par-
ticular, the family Lrt(OCA) is properly included in Lrt(SOCA).

Computational Capacity (2)

Lemma

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA).

Ü L ∈ Llt(OCA) \Lrt(OCA) can be sped up to be accepted in
time 2n− 2.

Ü An OCA for emb(L) checks in the first time step the correct
format of the input.

Ü In the second time step, all $-cells are dissolved.

Ü In the remaining time, L is simulated.

Theorem

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA) but does not belong to Lrt(OCA). In par-
ticular, the family Lrt(OCA) is properly included in Lrt(SOCA).

Computational Capacity (2)

Lemma

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA).

Ü L ∈ Llt(OCA) \Lrt(OCA) can be sped up to be accepted in
time 2n− 2.

Ü An OCA for emb(L) checks in the first time step the correct
format of the input.

Ü In the second time step, all $-cells are dissolved.

Ü In the remaining time, L is simulated.

Theorem

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA) but does not belong to Lrt(OCA). In par-
ticular, the family Lrt(OCA) is properly included in Lrt(SOCA).

Computational Capacity (2)

Lemma

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA).

Ü L ∈ Llt(OCA) \Lrt(OCA) can be sped up to be accepted in
time 2n− 2.

Ü An OCA for emb(L) checks in the first time step the correct
format of the input.

Ü In the second time step, all $-cells are dissolved.

Ü In the remaining time, L is simulated.

Theorem

Let L be a language from Llt(OCA) \Lrt(OCA). Then emb(L)
belongs to Lrt(SOCA) but does not belong to Lrt(OCA). In par-
ticular, the family Lrt(OCA) is properly included in Lrt(SOCA).

Real-Time SOCA and Iterative Arrays

Theorem

Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is even } is
accepted by a real-time SOCA.

Ü Embedding of the two-way computation into a one-way device.

Ü Speed-up of the computation.

Ü Dissolving of cells to gain additional time.

Theorem

Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is odd } is
accepted by a real-time SOCA.

Real-Time SOCA and Iterative Arrays

Theorem

Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is even } is
accepted by a real-time SOCA.

Ü Embedding of the two-way computation into a one-way device.

Ü Speed-up of the computation.

Ü Dissolving of cells to gain additional time.

Theorem

Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is odd } is
accepted by a real-time SOCA.

Real-Time SOCA and Iterative Arrays

Theorem

Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is even } is
accepted by a real-time SOCA.

Ü Embedding of the two-way computation into a one-way device.

Ü Speed-up of the computation.

Ü Dissolving of cells to gain additional time.

Theorem

Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is odd } is
accepted by a real-time SOCA.

Real-Time SOCA and Iterative Arrays

Theorem

Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is even } is
accepted by a real-time SOCA.

Ü Embedding of the two-way computation into a one-way device.

Ü Speed-up of the computation.

Ü Dissolving of cells to gain additional time.

Theorem

Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is odd } is
accepted by a real-time SOCA.

Real-Time SOCA and Iterative Arrays

Theorem

Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is even } is
accepted by a real-time SOCA.

Ü Embedding of the two-way computation into a one-way device.

Ü Speed-up of the computation.

Ü Dissolving of cells to gain additional time.

Theorem

Let L belong to Lrt(IA). Then {w | wR ∈ L and |w| is odd } is
accepted by a real-time SOCA.

Applications

Ü { a2n | n ≥ 1 } ∈ Lrt(SOCA)

Ü { ap | p > 2 and p is prime } ∈ Lrt(SOCA)

Ü {w | w ∈ {a, b}∗ and |w|a = |w|b }

Theorem

Let L ⊆ A∗ be a language from Lrt(IA) and $ /∈ A be a letter.
Then { $w | wR ∈ L } is accepted by a real-time SOCA.

Ü Remember DCFλ ⊂ Lrt(IA).

Applications

Ü { a2n | n ≥ 1 } ∈ Lrt(SOCA)

Ü { ap | p > 2 and p is prime } ∈ Lrt(SOCA)

Ü {w | w ∈ {a, b}∗ and |w|a = |w|b }

Theorem

Let L ⊆ A∗ be a language from Lrt(IA) and $ /∈ A be a letter.
Then { $w | wR ∈ L } is accepted by a real-time SOCA.

Ü Remember DCFλ ⊂ Lrt(IA).

Applications

Ü { a2n | n ≥ 1 } ∈ Lrt(SOCA)

Ü { ap | p > 2 and p is prime } ∈ Lrt(SOCA)

Ü {w | w ∈ {a, b}∗ and |w|a = |w|b }

Theorem

Let L ⊆ A∗ be a language from Lrt(IA) and $ /∈ A be a letter.
Then { $w | wR ∈ L } is accepted by a real-time SOCA.

Ü Remember DCFλ ⊂ Lrt(IA).

Applications

Ü { a2n | n ≥ 1 } ∈ Lrt(SOCA)

Ü { ap | p > 2 and p is prime } ∈ Lrt(SOCA)

Ü {w | w ∈ {a, b}∗ and |w|a = |w|b }

Theorem

Let L ⊆ A∗ be a language from Lrt(IA) and $ /∈ A be a letter.
Then { $w | wR ∈ L } is accepted by a real-time SOCA.

Ü Remember DCFλ ⊂ Lrt(IA).

Applications

Ü { a2n | n ≥ 1 } ∈ Lrt(SOCA)

Ü { ap | p > 2 and p is prime } ∈ Lrt(SOCA)

Ü {w | w ∈ {a, b}∗ and |w|a = |w|b }

Theorem

Let L ⊆ A∗ be a language from Lrt(IA) and $ /∈ A be a letter.
Then { $w | wR ∈ L } is accepted by a real-time SOCA.

Ü Remember DCFλ ⊂ Lrt(IA).

Dissolving versus Time

Ü Let M be an SOCA and f : N→ N be an increasing function.

Ü If all w ∈ L(M) are accepted with computations where the
number of dissolved cells is bounded by f(|w|), then M is
said to be dissolving bounded by f .

Ü The corresponding class of SOCA is denoted by f -SOCA.

Theorem

Let M be an f -SOCA working in real time. Then an equivalent
conventional OCA M ′ working in time n+ f(n) can effectively be
constructed.

Ü Freeze cells instead of dissolving them.

Ü Slow down the computation.

Dissolving versus Time

Ü Let M be an SOCA and f : N→ N be an increasing function.

Ü If all w ∈ L(M) are accepted with computations where the
number of dissolved cells is bounded by f(|w|), then M is
said to be dissolving bounded by f .

Ü The corresponding class of SOCA is denoted by f -SOCA.

Theorem

Let M be an f -SOCA working in real time. Then an equivalent
conventional OCA M ′ working in time n+ f(n) can effectively be
constructed.

Ü Freeze cells instead of dissolving them.

Ü Slow down the computation.

Dissolving versus Time

Ü Let M be an SOCA and f : N→ N be an increasing function.

Ü If all w ∈ L(M) are accepted with computations where the
number of dissolved cells is bounded by f(|w|), then M is
said to be dissolving bounded by f .

Ü The corresponding class of SOCA is denoted by f -SOCA.

Theorem

Let M be an f -SOCA working in real time. Then an equivalent
conventional OCA M ′ working in time n+ f(n) can effectively be
constructed.

Ü Freeze cells instead of dissolving them.

Ü Slow down the computation.

Dissolving versus Time

Ü Let M be an SOCA and f : N→ N be an increasing function.

Ü If all w ∈ L(M) are accepted with computations where the
number of dissolved cells is bounded by f(|w|), then M is
said to be dissolving bounded by f .

Ü The corresponding class of SOCA is denoted by f -SOCA.

Theorem

Let M be an f -SOCA working in real time. Then an equivalent
conventional OCA M ′ working in time n+ f(n) can effectively be
constructed.

Ü Freeze cells instead of dissolving them.

Ü Slow down the computation.

Dissolving versus Time

Ü Let M be an SOCA and f : N→ N be an increasing function.

Ü If all w ∈ L(M) are accepted with computations where the
number of dissolved cells is bounded by f(|w|), then M is
said to be dissolving bounded by f .

Ü The corresponding class of SOCA is denoted by f -SOCA.

Theorem

Let M be an f -SOCA working in real time. Then an equivalent
conventional OCA M ′ working in time n+ f(n) can effectively be
constructed.

Ü Freeze cells instead of dissolving them.

Ü Slow down the computation.

Dissolving versus Time (2)

Ü What about the other way around?

Ü Is there a general approach to trade time for dissolving of
cells?

Ü There exists an infinite time hierarchy
Ln+r2(n)(OCA) ⊂ Ln+r1(n)(OCA) in between real-time and
linear-time.

Theorem

Let r1, r2 : N → N be two increasing functions. If r−11 is OCA-
constructible, r2(O(n)) ≤ O(r2(n)), and r2 · log(r2) ∈ o(r1), then

Lrt(r2-SOCA) ⊂ Lrt(r1-SOCA).

Dissolving versus Time (2)

Ü What about the other way around?

Ü Is there a general approach to trade time for dissolving of
cells?

Ü There exists an infinite time hierarchy
Ln+r2(n)(OCA) ⊂ Ln+r1(n)(OCA) in between real-time and
linear-time.

Theorem

Let r1, r2 : N → N be two increasing functions. If r−11 is OCA-
constructible, r2(O(n)) ≤ O(r2(n)), and r2 · log(r2) ∈ o(r1), then

Lrt(r2-SOCA) ⊂ Lrt(r1-SOCA).

Dissolving versus Time (2)

Ü What about the other way around?

Ü Is there a general approach to trade time for dissolving of
cells?

Ü There exists an infinite time hierarchy
Ln+r2(n)(OCA) ⊂ Ln+r1(n)(OCA) in between real-time and
linear-time.

Theorem

Let r1, r2 : N → N be two increasing functions. If r−11 is OCA-
constructible, r2(O(n)) ≤ O(r2(n)), and r2 · log(r2) ∈ o(r1), then

Lrt(r2-SOCA) ⊂ Lrt(r1-SOCA).

Dissolving versus Time (2)

Ü What about the other way around?

Ü Is there a general approach to trade time for dissolving of
cells?

Ü There exists an infinite time hierarchy
Ln+r2(n)(OCA) ⊂ Ln+r1(n)(OCA) in between real-time and
linear-time.

Theorem

Let r1, r2 : N → N be two increasing functions. If r−11 is OCA-
constructible, r2(O(n)) ≤ O(r2(n)), and r2 · log(r2) ∈ o(r1), then

Lrt(r2-SOCA) ⊂ Lrt(r1-SOCA).

Dissolving versus Time (3)

Steps of the proof:

Ü Let Lr1 be the witness language of the time hierarchy.

Ü Define L$,r1 such that exactly one $ is inserted after each of
the rightmost r1(|w|) symbols of w ∈ Lr1 .

Ü Show that L$,r1 is accepted by a real-time r1-SOCA.

Ü Assume that L$,r1 is accepted by a real-time r2-SOCA.

Ü Then, L$,r1 is accepted by an n+ r2(n)-time OCA.

Ü Construct an n+ r2(n)-time OCA accepting Lr1 .

Applications:

Ü Lrt(n
p-SOCA) ⊂ Lrt(n

q-SOCA) for two rational numbers
0 ≤ p < q ≤ 1.

Ü Lrt(log
[j] -SOCA) ⊂ Lrt(log

[i] -SOCA) where log[i] denotes
the i-fold iterated logarithms and 0 < i < j are integers.

Dissolving versus Time (3)

Steps of the proof:

Ü Let Lr1 be the witness language of the time hierarchy.

Ü Define L$,r1 such that exactly one $ is inserted after each of
the rightmost r1(|w|) symbols of w ∈ Lr1 .

Ü Show that L$,r1 is accepted by a real-time r1-SOCA.

Ü Assume that L$,r1 is accepted by a real-time r2-SOCA.

Ü Then, L$,r1 is accepted by an n+ r2(n)-time OCA.

Ü Construct an n+ r2(n)-time OCA accepting Lr1 .

Applications:

Ü Lrt(n
p-SOCA) ⊂ Lrt(n

q-SOCA) for two rational numbers
0 ≤ p < q ≤ 1.

Ü Lrt(log
[j] -SOCA) ⊂ Lrt(log

[i] -SOCA) where log[i] denotes
the i-fold iterated logarithms and 0 < i < j are integers.

Dissolving versus Time (3)

Steps of the proof:

Ü Let Lr1 be the witness language of the time hierarchy.

Ü Define L$,r1 such that exactly one $ is inserted after each of
the rightmost r1(|w|) symbols of w ∈ Lr1 .

Ü Show that L$,r1 is accepted by a real-time r1-SOCA.

Ü Assume that L$,r1 is accepted by a real-time r2-SOCA.

Ü Then, L$,r1 is accepted by an n+ r2(n)-time OCA.

Ü Construct an n+ r2(n)-time OCA accepting Lr1 .

Applications:

Ü Lrt(n
p-SOCA) ⊂ Lrt(n

q-SOCA) for two rational numbers
0 ≤ p < q ≤ 1.

Ü Lrt(log
[j] -SOCA) ⊂ Lrt(log

[i] -SOCA) where log[i] denotes
the i-fold iterated logarithms and 0 < i < j are integers.

Dissolving versus Time (3)

Steps of the proof:

Ü Let Lr1 be the witness language of the time hierarchy.

Ü Define L$,r1 such that exactly one $ is inserted after each of
the rightmost r1(|w|) symbols of w ∈ Lr1 .

Ü Show that L$,r1 is accepted by a real-time r1-SOCA.

Ü Assume that L$,r1 is accepted by a real-time r2-SOCA.

Ü Then, L$,r1 is accepted by an n+ r2(n)-time OCA.

Ü Construct an n+ r2(n)-time OCA accepting Lr1 .

Applications:

Ü Lrt(n
p-SOCA) ⊂ Lrt(n

q-SOCA) for two rational numbers
0 ≤ p < q ≤ 1.

Ü Lrt(log
[j] -SOCA) ⊂ Lrt(log

[i] -SOCA) where log[i] denotes
the i-fold iterated logarithms and 0 < i < j are integers.

Dissolving versus Time (3)

Steps of the proof:

Ü Let Lr1 be the witness language of the time hierarchy.

Ü Define L$,r1 such that exactly one $ is inserted after each of
the rightmost r1(|w|) symbols of w ∈ Lr1 .

Ü Show that L$,r1 is accepted by a real-time r1-SOCA.

Ü Assume that L$,r1 is accepted by a real-time r2-SOCA.

Ü Then, L$,r1 is accepted by an n+ r2(n)-time OCA.

Ü Construct an n+ r2(n)-time OCA accepting Lr1 .

Applications:

Ü Lrt(n
p-SOCA) ⊂ Lrt(n

q-SOCA) for two rational numbers
0 ≤ p < q ≤ 1.

Ü Lrt(log
[j] -SOCA) ⊂ Lrt(log

[i] -SOCA) where log[i] denotes
the i-fold iterated logarithms and 0 < i < j are integers.

Dissolving versus Time (3)

Steps of the proof:

Ü Let Lr1 be the witness language of the time hierarchy.

Ü Define L$,r1 such that exactly one $ is inserted after each of
the rightmost r1(|w|) symbols of w ∈ Lr1 .

Ü Show that L$,r1 is accepted by a real-time r1-SOCA.

Ü Assume that L$,r1 is accepted by a real-time r2-SOCA.

Ü Then, L$,r1 is accepted by an n+ r2(n)-time OCA.

Ü Construct an n+ r2(n)-time OCA accepting Lr1 .

Applications:

Ü Lrt(n
p-SOCA) ⊂ Lrt(n

q-SOCA) for two rational numbers
0 ≤ p < q ≤ 1.

Ü Lrt(log
[j] -SOCA) ⊂ Lrt(log

[i] -SOCA) where log[i] denotes
the i-fold iterated logarithms and 0 < i < j are integers.

Dissolving versus Time (3)

Steps of the proof:

Ü Let Lr1 be the witness language of the time hierarchy.

Ü Define L$,r1 such that exactly one $ is inserted after each of
the rightmost r1(|w|) symbols of w ∈ Lr1 .

Ü Show that L$,r1 is accepted by a real-time r1-SOCA.

Ü Assume that L$,r1 is accepted by a real-time r2-SOCA.

Ü Then, L$,r1 is accepted by an n+ r2(n)-time OCA.

Ü Construct an n+ r2(n)-time OCA accepting Lr1 .

Applications:

Ü Lrt(n
p-SOCA) ⊂ Lrt(n

q-SOCA) for two rational numbers
0 ≤ p < q ≤ 1.

Ü Lrt(log
[j] -SOCA) ⊂ Lrt(log

[i] -SOCA) where log[i] denotes
the i-fold iterated logarithms and 0 < i < j are integers.

Dissolving versus Time (3)

Steps of the proof:

Ü Let Lr1 be the witness language of the time hierarchy.

Ü Define L$,r1 such that exactly one $ is inserted after each of
the rightmost r1(|w|) symbols of w ∈ Lr1 .

Ü Show that L$,r1 is accepted by a real-time r1-SOCA.

Ü Assume that L$,r1 is accepted by a real-time r2-SOCA.

Ü Then, L$,r1 is accepted by an n+ r2(n)-time OCA.

Ü Construct an n+ r2(n)-time OCA accepting Lr1 .

Applications:

Ü Lrt(n
p-SOCA) ⊂ Lrt(n

q-SOCA) for two rational numbers
0 ≤ p < q ≤ 1.

Ü Lrt(log
[j] -SOCA) ⊂ Lrt(log

[i] -SOCA) where log[i] denotes
the i-fold iterated logarithms and 0 < i < j are integers.

