Shrinking One-Way Cellular Automata

Martin Kutrib Andreas Malcher Matthias Wendlandt

Institut fur Informatik, Universitdt Giessen,
Arndtstr. 2, 35392 Giessen, Germany
email: {kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

AUTOMATA 2015, Turku, Finland

Cellular Automata and Iterative Arrays

A two-way cellular automaton (CA):

o o 7]

Cellular Automata and lterative Arrays
A two-way cellular automaton (CA):

o o 7]

A one-way cellular automaton (OCA):

- fa{ak {f k- fwk]

Cellular Automata and Iterative Arrays

A two-way cellular automaton (CA):
0 wh{7]

A one-way cellular automaton (OCA):

- fa{ak {f k- fwk]

An iterative array (lIA) is a cellular automaton with sequential
input mode.

[0}—{90}—{d0}-—{90}—{d0}-—{d0}—{do }-~{d0 -

ajasas - - - ap#

Recognizing Formal Languages With Cellular Automata

Input w = ajay---ag € AT

Recognizing Formal Languages With Cellular Automata

Input w = ajay---ag € AT

t=0 [# o1 oo ds o at o5 |0} # |
t=1 [#f—laif—af—a~a gl ¢

2 u € AT is accepted, if there exists a time step at which the
first cell enters an accepting state.

Recognizing Formal Languages With Cellular Automata

Input w = ajay---ag € AT

t=0 [# o1 oo ds o at o5 |0} # |
t=1 [#f—laif—af—a~a gl ¢

2 u € AT is accepted, if there exists a time step at which the
first cell enters an accepting state.

» L(M)={ue€ A" | uis accepted by M }

Recognizing Formal Languages With Cellular Automata

Input w = ajay---ag € AT

t=0 [# o1 oo ds o at o5 |0} # |
t=1 [l e

IIIIIIIH

2 u € AT is accepted, if there exists a time step at which the
first cell enters an accepting state.

» L(M)={ue€ A" | uis accepted by M }
= M has time complexity t : N = N, ¢(n) > n, if all u € L(M)
are accepted within ¢(|u|) time steps.

Recognizing Formal Languages With Cellular Automata

Input w = ajay---ag € AT

t=0 [# o1 oo ds o at o5 |0} # |
t=1 [l e

IIIIIIIH

2 u € AT is accepted, if there exists a time step at which the
first cell enters an accepting state.

» L(M)={ue€ A" | uis accepted by M }

= M has time complexity t : N = N, ¢(n) > n, if all u € L(M)
are accepted within ¢(|u|) time steps.

2 Z,(CA)={L| Lis accepted with time complexity ¢ }

Important Language Classes

= realtime-CA languages Z,+(CA) (t(Ju|) = |u|)
= lineartime-CA languages .Z;(CA) (t(|u]) =m - |u|, m € Q,
m > 1)

The language classes for one-way cellular automata .Z,,(OCA),
Z1:(OCA) are defined analogously.

Important Language Classes

= realtime-CA languages Z,+(CA) (t(Ju|) = |u|)
= lineartime-CA languages .Z;(CA) (t(|u]) =m - |u|, m € Q,
m > 1)
The language classes for one-way cellular automata .Z,,(OCA),
Z1:(OCA) are defined analogously.

For iterative arrays
< realtime-|A languages .Z(IA) (t(Ju|) = |u| + 1)
= lineartime-IA languages Z3:(IA) (t(Ju]) = m - |u|, m € Q,
m > 1)

Computational Capacity

DCS =

CF C

DCF cC

REG < LCF C

Z(CA)
Ul
2(OCA)
Ul
Zi(CA)
Ul
Z+(CA)
Il
Z(OCA)R
U
Zr(OCA)

D

Z(IA)
Ul

Zu(IA)
U

Z4(IA) > DCF,

The language classes .%,;(OCA) and .Z,,(IA) are incomparable.
Both CF and .Z:(OCA) and CF and .Z+(IA) are incomparable.

Shrinking Cellular Automata — Definition

A shrinking one-way cellular automaton (SOCA) is a system
(S, F, A, #,5), where

= S is the finite set of cell states,

Shrinking Cellular Automata — Definition

A shrinking one-way cellular automaton (SOCA) is a system
(S, F, A, #,5), where
= S is the finite set of cell states,

< [C S is the set of accepting states,

Shrinking Cellular Automata — Definition

A shrinking one-way cellular automaton (SOCA) is a system
(S, F, A, #,5), where

= S is the finite set of cell states,

< [C S is the set of accepting states,

- A C S is the finite set of input symbols,

Shrinking Cellular Automata — Definition

A shrinking one-way cellular automaton (SOCA) is a system
(S, F, A, #,5), where

= S is the finite set of cell states,

< [C S is the set of accepting states,

- A C S is the finite set of input symbols,

= # ¢ S is the permanent boundary symbol,

Shrinking Cellular Automata — Definition

A shrinking one-way cellular automaton (SOCA) is a system
(S, F, A, #,5), where
= S is the finite set of cell states,
< [C S is the set of accepting states,
- A C S is the finite set of input symbols,
= # ¢ S is the permanent boundary symbol,
-

d: 8 x Sy — S U {dissolve} is the local transition function.

Shrinking Cellular Automata — Definition

A shrinking one-way cellular automaton (SOCA) is a system
(S, F, A, #,5), where

= S is the finite set of cell states,

< [C S is the set of accepting states,

- A C S is the finite set of input symbols,

= # ¢ S is the permanent boundary symbol,

2 §:5 x Sy — SU {dissolve} is the local transition function.

We define realtime-SOCA languages -£,+(SOCA) with t(|u|) = |u]
as usual.

Example

L={$w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

Example

L={$w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

$ a b b a b b a

Example

L={%w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

$

a

b

b

a

b

b

a a #

Example

L={%w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

$ a b b a b b a a #
$ a b b a b b a - #
$ a b b a b . a’ #

Example

L={%w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

$ | a | b | b | a | b | b | a | a | #
$abbabba-#
$abbab.a’#

Example

L={%w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

$ | a | b | b | a | b | b | a | a | #
$abbabba-#
$abbab.a’#
$ | a | b | b | a | #

Example

L={%w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

$ a b b a b b a a #

Example (2)

L={%w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

$ ‘ b I

Example (2)

L={%w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

Example (2)

L={%w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

Example (2)

L={%w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

Example (2)

L={%w|we{a,b}* and |w|, = |w|p } € Z+(SOCA).

acc #

Computational Capacity

A valuable tool concerns embeddings. Let L C A*, $ ¢ A, and
emb : A* — A3, where emb(a) = a$ for a € A.

Computational Capacity

A valuable tool concerns embeddings. Let L C A*, $ ¢ A, and
emb : A* — A3, where emb(a) = a$ for a € A.

Lemma

Let r : N — N be an increasing function so that #(O(n)) < O(r(n)).
A language L belongs to the family .2, () (OCA) if and only if
emb(L) belongs to £, () (OCA).

Computational Capacity

A valuable tool concerns embeddings. Let L C A*, $ ¢ A, and
emb : A* — A3, where emb(a) = a$ for a € A.

Lemma

Let r : N — N be an increasing function so that #(O(n)) < O(r(n)).
A language L belongs to the family .2, () (OCA) if and only if
emb(L) belongs to £, () (OCA).

- Let M be an OCA accepting emb(L). In an OCA accepting
L each cell simulates two adjacent cells of M and the OCA is
finally sped up suitably.

Computational Capacity

A valuable tool concerns embeddings. Let L C A*, $ ¢ A, and
emb : A* — A3, where emb(a) = a$ for a € A.

Lemma

Let r : N — N be an increasing function so that #(O(n)) < O(r(n)).
A language L belongs to the family .2, () (OCA) if and only if
emb(L) belongs to £, () (OCA).

- Let M be an OCA accepting emb(L). In an OCA accepting
L each cell simulates two adjacent cells of M and the OCA is
finally sped up suitably.

- Let M be an OCA accepting L. An OCA accepting emb(L)
is first sped up suitably. Then, two adjacent cells simulate in
two time steps one transition of M.

Computational Capacity (2)

Lemma

Let L be a language from .£;(OCA) \ .£,+(OCA). Then emb(L)
belongs to .Z+(SOCA).

Computational Capacity (2)

Lemma

Let L be a language from .£;(OCA) \ .£,+(OCA). Then emb(L)
belongs to .Z+(SOCA).

2> L e £,(0OCA)\ Z+(OCA) can be sped up to be accepted in
time 2n — 2.

Computational Capacity (2)

Lemma

Let L be a language from .£;(OCA) \ .£,+(OCA). Then emb(L)
belongs to .Z+(SOCA).

2> L e £,(0OCA)\ Z+(OCA) can be sped up to be accepted in
time 2n — 2.

= An OCA for emb(L) checks in the first time step the correct
format of the input.

Computational Capacity (2)

Lemma
Let L be a language from .£;(OCA) \ .£,+(OCA). Then emb(L)
belongs to .Z+(SOCA).

2> L e £,(0OCA)\ Z+(OCA) can be sped up to be accepted in
time 2n — 2.

= An OCA for emb(L) checks in the first time step the correct
format of the input.

- In the second time step, all $-cells are dissolved.

Computational Capacity (2)

Lemma

Let L be a language from .£;(OCA) \ .£,+(OCA). Then emb(L)
belongs to .Z+(SOCA).

2> L e £,(0OCA)\ Z+(OCA) can be sped up to be accepted in
time 2n — 2.

= An OCA for emb(L) checks in the first time step the correct
format of the input.

- In the second time step, all $-cells are dissolved.

= In the remaining time, L is simulated.

Computational Capacity (2)

Lemma

Let L be a language from .£;(OCA) \ .£,+(OCA). Then emb(L)
belongs to .Z+(SOCA).

2> L e £,(0OCA)\ Z+(OCA) can be sped up to be accepted in
time 2n — 2.

= An OCA for emb(L) checks in the first time step the correct
format of the input.

- In the second time step, all $-cells are dissolved.

= In the remaining time, L is simulated.

Theorem

Let L be a language from .£},(OCA) \ .Z,,(OCA). Then emb(L)
belongs to .Z,,(SOCA) but does not belong to .7, (OCA). In par-
ticular, the family Z,,(OCA) is properly included in Z,.(SOCA).

Real-Time SOCA and lterative Arrays

Theorem

Let L belong to .%,;(IA). Then {w | w* € L and |w]| is even} is
accepted by a real-time SOCA.

Real-Time SOCA and lterative Arrays

Theorem

Let L belong to .%,;(IA). Then {w | w* € L and |w]| is even} is
accepted by a real-time SOCA.

- Embedding of the two-way computation into a one-way device.

Real-Time SOCA and lterative Arrays

Theorem

Let L belong to .%,;(IA). Then {w | w* € L and |w]| is even} is
accepted by a real-time SOCA.

- Embedding of the two-way computation into a one-way device.

= Speed-up of the computation.

Real-Time SOCA and lterative Arrays

Theorem

Let L belong to .%,;(IA). Then {w | w* € L and |w]| is even} is
accepted by a real-time SOCA.

- Embedding of the two-way computation into a one-way device.
= Speed-up of the computation.

- Dissolving of cells to gain additional time.

Real-Time SOCA and lterative Arrays

Theorem

Let L belong to .%,;(IA). Then {w | w* € L and |w]| is even} is
accepted by a real-time SOCA.

- Embedding of the two-way computation into a one-way device.
= Speed-up of the computation.

- Dissolving of cells to gain additional time.

Theorem

Let L belong to .%,,(IA). Then {w | w'* € L and |w| is odd } is
accepted by a real-time SOCA.

Applications

=+ {a®" |n>1}€ %4(SOCA)

Applications

=+ {a®" |n>1}€ %4(SOCA)
2 {a?|p>2andpisprime} € Z.(SOCA)

Applications

=+ {a®" |n>1}€ %4(SOCA)
2 {a?|p>2andpisprime} € Z.(SOCA)
2 {w]|we{a,b}* and |w|, = |w|p }

Applications

=+ {a®" |n>1}€ %4(SOCA)
2 {a?|p>2andpisprime} € Z.(SOCA)
2 {w]|we{a,b}* and |w|, = |w|p }

Theorem

Let L C A* be a language from .%,,(IA) and $ ¢ A be a letter.
Then {$w | wf € L} is accepted by a real-time SOCA.

Applications

=+ {a®" |n>1}€ %4(SOCA)
2 {a?|p>2andpisprime} € Z.(SOCA)
2 {w]|we{a,b}* and |w|, = |w|p }

Theorem

Let L C A* be a language from .%,,(IA) and $ ¢ A be a letter.
Then {$w | wf € L} is accepted by a real-time SOCA.

- Remember DCF) C .Z(IA).

Dissolving versus Time

< Let M be an SOCA and f : N — N be an increasing function.

Dissolving versus Time

< Let M be an SOCA and f : N — N be an increasing function.

= If all w € L(M) are accepted with computations where the
number of dissolved cells is bounded by f(|w|), then M is
said to be dissolving bounded by f.

Dissolving versus Time

< Let M be an SOCA and f : N — N be an increasing function.

= If all w € L(M) are accepted with computations where the
number of dissolved cells is bounded by f(|w|), then M is
said to be dissolving bounded by f.

- The corresponding class of SOCA is denoted by f-SOCA.

Dissolving versus Time

< Let M be an SOCA and f : N — N be an increasing function.

= If all w € L(M) are accepted with computations where the
number of dissolved cells is bounded by f(|w|), then M is
said to be dissolving bounded by f.

- The corresponding class of SOCA is denoted by f-SOCA.

Theorem

Let M be an f-SOCA working in real time. Then an equivalent
conventional OCA M’ working in time n + f(n) can effectively be
constructed.

Dissolving versus Time

< Let M be an SOCA and f : N — N be an increasing function.

= If all w € L(M) are accepted with computations where the
number of dissolved cells is bounded by f(|w|), then M is
said to be dissolving bounded by f.

- The corresponding class of SOCA is denoted by f-SOCA.

Theorem

Let M be an f-SOCA working in real time. Then an equivalent
conventional OCA M’ working in time n + f(n) can effectively be
constructed.

- Freeze cells instead of dissolving them.

- Slow down the computation.

Dissolving versus Time (2)

- What about the other way around?

Dissolving versus Time (2)

- What about the other way around?

- Is there a general approach to trade time for dissolving of
cells?

Dissolving versus Time (2)

- What about the other way around?

- Is there a general approach to trade time for dissolving of
cells?
- There exists an infinite time hierarchy

Ztra(n)(OCA) C 2, 11 (n)(OCA) in between real-time and
linear-time.

Dissolving versus Time (2)

- What about the other way around?

- Is there a general approach to trade time for dissolving of
cells?

- There exists an infinite time hierarchy
Ztra(n)(OCA) C 2, 11 (n)(OCA) in between real-time and
linear-time.

Theorem

Let 71,72 : N — N be two increasing functions. If rl_l is OCA-
constructible, 72(O(n)) < O(r2(n)), and ry - log(ra) € o(r1), then

Zri(ra-SOCA) C Z(r1-SOCA).

Dissolving versus Time (3)

Steps of the proof:
= Let L,, be the witness language of the time hierarchy.

Dissolving versus Time (3)

Steps of the proof:
= Let L,, be the witness language of the time hierarchy.

= Define Lg,, such that exactly one § is inserted after each of
the rightmost 71 (Jw|) symbols of w € L,,.

Dissolving versus Time (3)

Steps of the proof:
= Let L,, be the witness language of the time hierarchy.

= Define Lg,, such that exactly one § is inserted after each of
the rightmost 71 (Jw|) symbols of w € L,,.

= Show that Lg , is accepted by a real-time r-SOCA.

Dissolving versus Time (3)

Steps of the proof:
= Let L,, be the witness language of the time hierarchy.

= Define Lg,, such that exactly one § is inserted after each of
the rightmost 71 (Jw|) symbols of w € L,,.

= Show that Lg , is accepted by a real-time r-SOCA.
= Assume that Lg, is accepted by a real-time 75-SOCA.

Dissolving versus Time (3)

Steps of the proof:
= Let L,, be the witness language of the time hierarchy.

= Define Lg,, such that exactly one § is inserted after each of
the rightmost 71 (Jw|) symbols of w € L,,.

= Show that Lg , is accepted by a real-time r-SOCA.
= Assume that Lg, is accepted by a real-time 75-SOCA.
= Then, Ly, is accepted by an n + 75(n)-time OCA.

Dissolving versus Time (3)

Steps of the proof:
= Let L,, be the witness language of the time hierarchy.

= Define Lg,, such that exactly one § is inserted after each of
the rightmost 71 (Jw|) symbols of w € L,,.

= Show that Lg , is accepted by a real-time r-SOCA.
= Assume that Lg, is accepted by a real-time 75-SOCA.
= Then, Ly, is accepted by an n + 75(n)-time OCA.

= Construct an n + r2(n)-time OCA accepting L, .

Dissolving versus Time (3)

Steps of the proof:
= Let L,, be the witness language of the time hierarchy.

= Define Lg,, such that exactly one § is inserted after each of
the rightmost 71 (Jw|) symbols of w € L,,.

= Show that Lg , is accepted by a real-time r-SOCA.
= Assume that Lg, is accepted by a real-time 75-SOCA.
= Then, Ly, is accepted by an n + 75(n)-time OCA.

= Construct an n + r2(n)-time OCA accepting L, .

Applications:
2> Z4(nP-SOCA) C Z,+(n?-SOCA) for two rational numbers
0<p<g<l

Dissolving versus Time (3)

Steps of the proof:
= Let L,, be the witness language of the time hierarchy.

= Define Lg,, such that exactly one § is inserted after each of
the rightmost 71 (Jw|) symbols of w € L,,.

= Show that Lg , is accepted by a real-time r-SOCA.
= Assume that Lg, is accepted by a real-time 75-SOCA.
= Then, Ly, is accepted by an n + 75(n)-time OCA.

= Construct an n + r2(n)-time OCA accepting L, .

Applications:
2> Z4(nP-SOCA) C Z,+(n?-SOCA) for two rational numbers
0<p<g=<l
+ 2. (logh!-SOCA) © 2, (logl! -SOCA) where logl?! denotes
the i-fold iterated logarithms and 0 < ¢ < j are integers.

