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Physical Universality

Consider a CA over states Σ. Suppose we fix

a finite set of cells X ,

a configuration y of the cells surrounding X , and

a time t ∈ N.

This defines a transformation,

f : ΣX → ΣX .

Terminology

We say the program (y , t) implements the transformation f : ΣX → ΣX on
the region X .
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Definition (Janzing)

A cellular automaton is physically universal if it can implement any
transformation on any finite region.
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Outline

Properties of Physically Universal CAs

CAs which are not physically universal

A Physically Universal CA

Sketch argument for universality

Reversible/Quantum Physical Universality

Open Problems
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Properties of Physically Universal CAs

Section 1

Properties of Physically Universal CAs
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Properties of Physically Universal CAs

Rule 90
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Properties of Physically Universal CAs

Property 1: Computation

Observation

A cell in rule 90 is a linear combination of the inputs.

Claim

A cell in a physically universal CA can be an arbitrary function of the
inputs.
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Properties of Physically Universal CAs
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Properties of Physically Universal CAs

Game of Life

Turing-complete.
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Properties of Physically Universal CAs

Input Tape
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Properties of Physically Universal CAs

Rule 110

Also Turing-complete (via cyclic tag systems).
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Properties of Physically Universal CAs

Property 2: Reversibility

Physical universality =⇒ Injectivity

=⇒ Reversibility

Totalistic CA are not reversible.

Moore neighbourhood CAs are usually not reversible.

Block cellular automata
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Properties of Physically Universal CAs

Billiard Ball Model
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Properties of Physically Universal CAs

Problem 3a: Immutable cells
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Properties of Physically Universal CAs

Problem 3b: Isolated systems
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Properties of Physically Universal CAs

Hardy, Pomeau and de Pazzis gas
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Properties of Physically Universal CAs

Critters
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A Physically Universal CA

Section 2

A Physically Universal CA
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A Physically Universal CA

A Physically Universal CA

Based on particles moving on a two-dimensional grid.

Particle Properties:
1 Each particle is at a grid point, moving in one of four directions: NE,

NW, SE, SW.
2 Particles move one cell per timestep.
3 At most one particle with a given position/velocity.

Particles interact at grid points.
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A Physically Universal CA

Particle Interaction

Particle Interaction

When three particles meet, the two opposing particles reflect the third
particle. There is no interaction in all other cases.

The interaction is

reversible,

symmetric, and

conservative.
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A Physically Universal CA

Margolus Rule
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A Physically Universal CA

Margolus Rule
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A Physically Universal CA

Margolus Rule
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A Physically Universal CA

Physical Universality Checklist

Show how to

extract information from the input region,

arbitrarily manipulate the location of information,

apply a universal gate, and

reinsert data into the region.
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A Physically Universal CA

Reflection

0 1

1 x

0 1

1 x
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A Physically Universal CA

Deflection

0 1

x 1

x x

1 x
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A Physically Universal CA

Computation

y 0

x 1

1 x ∧ y

x ∧ y y
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A Physically Universal CA

Physical Universality Checklist

We can

extract information from the input region,

(do nothing)

arbitrarily manipulate the location of information,

(reflections and deflections)

apply a universal gate, and

(compute x ∧ y and copy bits)

reinsert data into the region.

(follows from other steps)
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Reversible/Quantum Physical Universality

Section 3

Reversible/Quantum Physical Universality
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Reversible/Quantum Physical Universality

Physical Universality

Suppose f is reversible.

x

P

f (x)

P ′(x)
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Reversible/Quantum Physical Universality

Reversible Physical Universality

If P ′ does not depend on x . . .

x

P

f (x)

P ′
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Reversible/Quantum Physical Universality

Reversible Physical Universality

. . . then P ′ is a program for the inverse.

f −1(y)

P

y

P ′
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Reversible/Quantum Physical Universality

Layered Cellular Automata

Use 1D layered cellular automata (Salo and Törmä)

Each block has multiple cells, one per layer.

Each layer moves at an integer speed.

Alternate between transforming cells and shifting layers.
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Reversible/Quantum Physical Universality

Engineered Reversibly Physically Universal CA

Build required operations into CA artificially.

Change speed If layers 1, 2, . . . , 5 are on then cycle layers −5, . . . ,−1.

Change direction If layers −5,−4, 4, 5 are on then swap 1, 2, 3 with
−1,−2,−3.

Apply reversible gate G If layers 4 and −4 are on, but 5 and −5 are off,
the apply gate G to −1,−2,−3 and 1, 2, 3.

Claim

With careful planning, CA will also have the diffusion property.
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Reversible/Quantum Physical Universality

Physical Universality Checklist

We can

extract information from the input region,

arbitrarily manipulate the location of the information,

apply a universal gate, and

reinsert data into the region.
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Reversible/Quantum Physical Universality

Quantum Cellular Automata

Analogy

Like a probabilistic cellular automaton with complex amplitudes instead of
probabilities.

Instead of a distribution over outcomes, e.g.,

A w.p.
1

10

B w.p.
3

10

C w.p.
3

5

the state is a quantum superposition of outcomes,√
1

10
|A〉+

√
3

10
|B〉+

√
3

5
|C 〉
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Reversible/Quantum Physical Universality

Probabilistic:

0→

{
0 w.p. 2

3

1 w.p. 1
3

1→

{
0 w.p. 1

3

1 w.p. 2
3

Quantum:

|0〉 →
√

2

3
|0〉+

1√
3
|1〉

|1〉 → 1√
3
|0〉 −

√
2

3
|1〉
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Reversible/Quantum Physical Universality

Probabilistic (Stochastic Matrices)

1

3

(
2 1
1 2

)
Quantum (Unitary Matrices)

1√
3

(√
2 1

1 −
√

2

)
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Reversible/Quantum Physical Universality

Quantum Physical Universality

Quantum magic implies the following.

Program configurations P1,P2, . . . for distinct unitaries must be
orthogonal.

Program cells may as well be classical.

Cannot implement all unitary operations in finite time.
Instead, approximate unitary operations.
It suffices to simulate quantum circuits.

Already know how to simulate reversible circuits.
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Open Problems

Section 4

Open Problems
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Open Problems

Open Problems

Time and Space Efficiency

Polynomial in region size and transformation complexity

Minimal number of states for each dimension/neighbourhood?

Qualitatively different physically universal CAs

Unbounded computation (e.g., Turing machines)?
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Bonus: Surprising Equivalent Definition

Section 5

Bonus: Surprising Equivalent Definition
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Equivalent Definition
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Bonus: Surprising Equivalent Definition

X

t

Code is data.
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Bonus: Surprising Equivalent Definition

X

P1

P2

P1 implements f1 on X in time t1

P2 implements f2 on X (and preserves P1) in time t2
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Bonus: Surprising Equivalent Definition

After t1 steps:

f1(X )
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Bonus: Surprising Equivalent Definition

After t2 steps:

f2(X )

P1

Luke Schaeffer (MIT) June 8, 2015 47 / 51



Bonus: Surprising Equivalent Definition

After t1 + t2 steps:

f1(f2(X ))
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Bonus: Surprising Equivalent Definition

X
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Bonus: Surprising Equivalent Definition

X
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