
Ramsey Theory

and

Related Topics

(Fall 2004, 2.5 cu)

J. Karhumäki
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The course considers a few ”jewels” of combinatorics. The results proved

are similar showing

”unavoidable regularities”

or

”impossibility of complete disorder”.

More intuitively the above means that

”Any large enough structure contains some (still large) regular

substructure”.

The results proved are

Ramsey’s Theorem which says that any large enough edge coloured graph

contains a large monochromatic subgraph.

Van der Waerden’s Theorem which says that if N is coloured by a fi-

nite number of colors, it contains arbitrarily long monochromatic arithmetic

progressions.

Shirshov’s Theorem: Any long enough word (i.e. a sequence of symbols

from a finite alphabet) is either highly periodic (i.e. contains a repetition of

high order) or is minimal (in certain sense).

These results were proved in years 1930, 1927 and 1957, respectively.

Amazingly each of the authors were working in different fields than combi-

natorics!!

Besides the above results we shall prove some related results as well as look

after applications. This is partially (I hope) done via seminar presentations.

Related problems were considered in ”Combinatorics on Words” under

the title unavoidability. There it was shown that

”Each long enough word (in fact longer than 3) over a binary alphabet

contains a repetition, i.e. a square”;

”There exists an infinite word over a binary alphabet which does not

contain a cube (in fact even a pattern of the form uufirst(u)”;
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”There exists an infinite word over a ternary alphabet which does not

contain a square”.

Consequently, the regularity defined by ”squares” is avoidable in ternary

alphabets, but not in binary ones, while that of ”cubes” is avoidable even in

binary alphabets. The above results are from Thue from 1906.

Related literature:

• R.L. Graham, B.L. Rothschild, J.H. Spencer, Ramsey Theory, John

Wiley & Sons, 1990.

• L. Lovasz, Combinatorial Problems and Excersices, North-Holland

1979.

• M. Lothaire, Combinatorics on Words, Addison-Wesley, 1983

• M. Lothaire, Algebraic Combinatorics on Words, Cambridge University

press, 2002.

• A. de Luca and S. Vanicchio, Finiteness and Regularity in semigroups

and Formal Languages, Springer, 1999.

I Simple Examples

Pigeon Hole Principle (PHL). If n items are put into n − 1 boxes, at

least one box contains at least two items.

Pigeon Hole Principle, infinite variant. If infinitely many items are put

into a finitely many boxes, at least one box contains infinitely many items.

The above cases are trivial. However, in the above setting one can find

quite nontrivial results.

Example 1. Assume that we want to place n balls into n boxes. Consider

two variants of the problem:

(i) each individual ball is placed randomly;
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(ii) in each step two boxes are chosen randomly and the ball is placed into

the one containing fewer balls.

The question asks how many balls are in the box containing the highest

number of balls. The answer are as follows.

In (i) the nuber is (1+O(1)) lnn/ ln ln n with a high probability (i.e. with

probability 1 − O(1)).

In (ii) the number is ln ln n/ ln 2 + O(1) with a high probability.

Consequently, in the former case there are essentially exponentially more

balls than in the second case in the box containing the highest number of

balls.

Example 2. We claim that every set of at least six persons contains a uni-

form click of size at least three. Here the click means a set of persons where

all persons either knows all the others or none of them knows any other. The

proof is a simple case analysis. Denote the fact that u and w know each other

by an edge between those: u—v. Then without loss of generality we have

u

v w t

u

v w t

or

In the former case if any two of v, w, t know each other, then we have a

click. But this is true also in the other case. The same argument applies to

the other case.

Ramsey’s Theorem extends this result to larger numbers.
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II Ramsey’s Theorem

In this section we consider Ramsey’s theorem and present several proofs of

it (or variants of it).

We start by fixing some terminology:

N = {1, 2, 3, . . .}
|X| = cardinality of X

[n] = {1, . . . , n} (or an arbitrary n element set)

[X]k = {Y |Y ⊆ X, |Y | = k}
[X]≤k = {Y |Y ⊆ X, |Y | ≤ k}
[X]ω = {Y |Y ⊆ X,Y is finite}
[[n]]k = [n]k

Kn : Complete graph with n vertices.

r-coloring of S: χ : S → [r]

color of s ∈ S: χ(s)

T ⊆ S is monochromatic: |χ(T )| = 1.

The following arrow notation is important. We write

n −→ (l)

if for any 2-coloring of [n]2 there exists T ⊆ [n] and |T | = l such that [T ]2 is

monochromatic. If the above holds we can identify [T ]2 with Kl, i.e. we can

say that [T ]2 is a complete graph of l edges.

Example 3. Example 2 of I can be reformulated as

6 −→ (3).

Indeed, [n] denotes the vertices of the graph (i.e. persons) and [n]2 the edges

(i.e. the relations ”know each other”).

The above arrow notation extends to: We write

(1) n −→ (l1, . . . , lr)

if for any r-coloring of [n]2 there exists i ∈ [r] and T ⊆ [n] such that |T | = li

and T is (monochromatic and) colored by i.

More intuitively, if we write (1) then
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• [n]2 is r-colored,

• [n]2 contains one of the graphs Kli as monochromatic, i.e. [n]2 cannot

avoid all monochromatic graphs Kl1, . . . , Klr .

In the case l1 = l2 = · · · = lr we write instead of (1) simply

n −→ (l)r.

In particular:

n −→ (l, l) ⇐⇒ n −→ (l)2 ⇐⇒ n −→ (l).

Example 4. The Formula

10 −→ (4, 3)

can be interpreted as: Any group of 10 persons contain either a subgroup of

four persons who know mutually each other or a subgroup of three persons

who do not know pairwise each other.

Simple facts:

(i) 10 −→ (4, 3) =⇒ 10 −→ (3, 3) ”reducing a subgraph”

(ii) 10 −→ (4, 3) =⇒ 11 −→ (4, 3) ”increasing the graph”

(iii) 10 −→ (4, 3) =⇒ 10 −→ (3, 4) ”changing the coloring”

(iv) 10 −→ (4, 3) =⇒ 10 −→ (4, 3, 2) ”adding K2 to a subgraph”

Parts (i)–(iii) are obvious, and part (iv) is easy to conclude. Note also that

all conditions (i)–(iv) extend immediately to the general case, as illustrated

by explanations.

Example 5.

l −→ (l, 2) is true (by (iv))

l − 1 −→ (l, 2) is not true.

The important Ramsey’s numbers R(l1, . . . , lr) are defined as follows:

R(l1, . . . , lr) = µn[n −→ (l1, . . . , lr)],
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where µn[ ] denotes the smallest n such that [ ] is true.

We use the abbreviations:

R(l, . . . , l
︸ ︷︷ ︸

r copies

) = R(l; r)

R(l; 2) = R(l, l) = R(l).

The conditions (i)–(iv) can be reformulated:

R(l1, . . . , lr) is increasing with respect to all arguments

R(l1, . . . , lr) is symmetric

R(l1, . . . , lr, 2) = R(l1, . . . , lr).

Example 6. The known values (in 1990) of the Ramsey’s numbers R(k, l)

are as follows:

k 3 4 5 6 7 8 9

l

3 6 9 14 18 23 28 36

4 18 25 35/41 49/61 56/84 69/115

5 43/49 58/87 80/143 101/216 121/316

6 102/165 111/298 127/495 169/780

And, of course, R(l, 2) = l. The value R(4, 4) was discovered in 1955, and

already R(5, 5) is expected to be beyond the capabilities of current comput-

ers!

Example 3 (revisited). As we saw R(3, 3) ≤ 6. By the graph below

here is indeed equality:

×

×

× ×

×
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Example 7. R(4, 3) ≤ 10. Indeed,

×

× × × × × ×

×

× × × ×

or

Now on the left part we can apply the previously proved fact R(3, 3) = 6, and

on the right part it is clear that there must be either a click of 3 connected

by dash-line or click of 4 connected by solid line. Hence the bound follows.

Note that the above does not give any lower bound nor prove the optimality

yet.

We defined the Ramsey’s numbers, but did not prove yet that they exist.

Theorem 1. R(l, k) exists for each k, l ≥ 2.

Proof. By double induction. So we assume:

(i) R(l, 2) = R(2, l) = l (which is true!)

(ii) R(l, k − 1) and R(l − 1, k) are defined.

Claim: R(l, k − 1) + R(l − 1, k) −→ (l, k) (and thus R(l, k) is defined).

Proof of Claim: Set n = R(l, k− 1)+R(l− 1, k). Further let χ be 2-coloring

of [n]2 and x ∈ [n].

We define

Ix = {y ∈ [n] | χ(x, y) = 1},
IIx = {y ∈ [n] | χ(x, y) = 2} = [n] − Ix − {x}.

Now,

|Ix| + |IIx| = n − 1

so that

|Ix| ≥ R(l − 1, k)
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or

|IIx| ≥ R(l, k − 1).

Consider the former alternative (the other is symmetric). By i.h. there exists

T ⊆ Ix, |T | = k such that [T ]2 is colored by 2

or

S ⊆ Ix, |S| = l − 1 such that [S]2 is colored by 1.

In the former case we are done, T is a required substructure. But so are we

also in the latter case, S ∪ {x} is a required substructure.

Another proof for theorem 1 in the case l = k. We show directly that

22l−1 − 1 −→ (l).

Fix S1 such that

|S1| ≥ 22l−1 − 1

and 2-coloring

χ : [S1]
2 → {1, 2}.

For i = 1, . . . , 2l − 1 we define sets Si and elements xi ∈ Si:

(i) When Si is defined, choose xi ∈ Si;

(ii) When xi is chosen, set

Tj = {u ∈ Si | χ(xi, u) = j} for j = 1, 2,

and choose

Si+1 = larger of the sets T1 and T2.

Now,

|Si+1| ≥ (|Si| − 1)/2 (since T1 + T2 = |Si| − 1),

and so by the choice of S1, we have

|S2l−1| ≥ 21 − 1 = 1.

Consequently, the points x1, . . . , x2l−1 are defined and pairwise disjoint.
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Next we define a new coloring

χ∗ : {x1, . . . , x2l−1} → {1, 2}

by

χ∗(xi) = j where χ(xi, y) = j, ∀y ∈ Si+1.

χ∗ divides the set {x1, . . . , x2l−1} into two disjoint parts. Hence one of those

contains at least l points, say

{xi1, . . . , xil}.

So these are colored by the same color, say r. Next consider indices 1 ≤ s <

t ≤ l. Then

xit ∈ Sit ⊆ Sis+1.

On the other hand, by the choice of indices and the definition of χ∗ we have

χ∗(xis) = χ(xis , y) ∀y ∈ Sis+1.

Therefore

χ(xis , xit) = r ∀s, t,

showing that we have found a monochromatic subgraph of l elements. �

The idea behind our proof is so called Induced coloring method :

S1

x
1 x

2

x
3 ...

1
2 2

Both of the above proofs can be modified for the general case:

Theorem 2. All Ramsey’s numbers R(l1, . . . , lr) exist.
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Proof. (Extension of that of Theorem 1 for r-colorings.) We have to show

n −→ (l1, . . . , ln)

for large enough n.

Method I. We set

n = 2 +
r∑

i=1

(R(l1, . . . , li − 1, . . . , lr) − 1).

Then the earlier arguments work.

Method II. We prove directly

r(l−1)r+1 − 1 −→ (l; r).

Now, as in the case r = 2, we construct points xi and sets Si. Here the sets

Tj, for j = 1, . . . , r, are constructed as intermediate steps, and Sj+1 is chosen

to be the largest of these. Then

|Si+1| ≥
⌊ |Si|

r

⌋

,

|S1| ≥ rr(l−1)+1 − 1,

|S2| ≥
⌊

rr(l−1) − 1

r

⌋

= rr(l−1) − 1,

. . .

|Sr(l−1)+1| ≥ r1 − 1.

So the points x1, . . . , xr(l−1)+1 are defined. For this set we define the induced

coloring χ∗. That derives a monochromatic subsequence xi1, . . . , xil of length

l, which, in turn, defines, by the construction, monochromatic complete sub-

graph of [n]2 of size l.

Next we extend Theorems 1 and 2 to colorings of k-element subsets, that

is we consider colorings of [n]k. We write

n −→ (l1, . . . , lr)
k,

if for any r-coloring of [n]k, there exists an index i, 1 ≤ i ≤ r, and subset

T ⊆ [n]k such that |T | = li and [T ]k is colored by i.
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In the case l = l1 = · · · = lr we simply write

n −→ (l)k
r

and we can say that any r-coloring of [n]k yields a monochromatic [l]k. Fur-

ther in the case r = 2 we have

n −→ (l)k ⇐⇒ n −→ (l)k
2 ⇐⇒ n −→ (l, l)k.

The generalized Ramsey numbers are defined as:

Rk(l1, . . . , lr) = µn[n −→ (l1, . . . , lr)
k],

Rk(l; r) = µn[n −→ (l)k
r ],

Rk(l) = µn[n −→ (l)k] (2 − colorings).

Of course the conditions (i)–(iv) in page 5 extend here, too.

Theorem 3. Generalized Ramsey numbers are defined.

Proof. By induction on k using the method of induced colorings.

k = 1: Trivial (by PHP): If
∑r

i=1(li − 1) + 1 balls are placed into r boxes

(e.g. colored by r colors), then at least one box contains at least l balls.

Consequently

1 +
r∑

i=1

(li − 1) −→ (l1, . . . , lr)
1.

k = 2: Was proved for clarity (although it is part of the induction step).

Induction step: Assume that the theorem is true for (k− 1)-element sets.

By the monotonicity properties it is enough to prove

n −→ (l)k
r

for large enough n.

Assume that n is ”large enough” (which will be specified later). Let

χ : [n]k → {1, . . . , r}

be an r-coloring. By induction assumption, let

t = Rk−1(l; r).
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We choose arbitrary elements a1, . . . , ak−2 ∈ [n] and denote

Sk−2 = [n] \ {a1, . . . , ak−2}.

Finally, we define points ai and sets Si as follows:

(i) If Si is defined, then choose any ai+1 ∈ Si;

(ii) If ai+1 is defined, devide Si \ {ai+1} into equivalence classes by

x ≡ y ⇐⇒ (∀T ⊆ {a1, . . . , ai+1}, |T | = k−1) χ(T∪{x}) = χ(T∪{y}).

And choose Si+1 equal to (one of) the maximal classes.

Claim: The number of these equivalence classes is at most r(
i+1
k−1).

Indeed, there are
(

i+1
k−1

)
(k − 1)-element subsets T . Each r coloring of

these subsets yields an equivalence class. Hence the claim follows.

It follows from the construction that

Si+1 ⊆ Si \ {ai+1}, and(2)

|Si+1| ≥ (|Si| − 1)

r(
i+1
k−1)

.

Now, the requirement for n is: at must be defined, that is the Si sets are not

allowed to be empty. The existence of such an n is guaranteed, if we require

that the recursion

ui+1 =
(ui − 1)

r(
i+1
k−1)

, uk−2 = n − (k − 2)

yields ut ≥ 1. Surely

n = 2r
Pt−1

i=k−1 (i+1
k−1)

suffices.

Next consider the sequence

a1, a2, . . . , at

thus defined. Assume that

1 ≤ i1 < i2 < · · · < ik−1 < s ≤ t.
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Then, by (i) and (2)

as ∈ Ss−1 ⊆ Sik−1+1.

Further by the definition of the equivalence relation:

(3) χ(ai1 , . . . , aik−1
, as) = χ(ai1 , . . . , aik−1

, x), ∀x ∈ Sik−1+1.

In particular, (3) is true for x = ar, where ik−1 < r < t. It follows that we

can define the coloring χ∗ of (k − 1)-element subsets of {a1, . . . , at} by the

condition

(4) χ∗(ai1, . . . , aik−1
) = χ(ai1 , . . . , aik−1

, as), ∀ik−1 < s ≤ t.

Observe that in above ik−1 < t. If ik−1 = t we can choose that value of χ∗

arbitrarily!

We are almost done. By induction hypothesis and the choice of t, the se-

quence a1, . . . , at has a subsequence b1, . . . , bl, which is monochromatic under

χ∗, that is to say:

• Each (k− 1)-element subset of {b1, . . . , bl} has the same color, say red,

under χ∗.

Then for all sequences of indices 1 ≤ j1 < · · · < jk−1 < jk ≤ l, we have

χ(bj1 , . . . , bjk−1
, bjk

) = χ∗(bj1, . . . , bjk−1
) = red.

This follows from (4).

So we have found an l-element subset of [n] such that its all k-element

subsets have the same color under our original coloring χ. This ends the

proof.

Let us consider two applications:

Example 8. Consider a totally ordered set A (e.g. each pair of elements are

comparable, and no repetitions). We claim that each long enough sequence

a1, . . . , an contains a monotonic subsequence of length l.

Indeed, this follows directly from the existence of R(l, l):

Define the coloring

χ(i, j) = red if ai < aj ,

χ(i, j) = blue if ai > aj.
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By no means, R(l, l) does not give an optimal bound for n. It can be shown

that (l − 1)2 + 1 suffices.

Secondly, we give a solution to the ”Budapest Problem” of Erdös.

Example 9 (Budapest Problem). Given n there exists N such that out

of any N points in the plane so that no three are on the same line, one can

choose n points forming convex n-polygon.

We claim that we can choose

N −→ (n)3,

that is the result follows from the existence of R3(n, n). Assume that we

have N points ordered as 1, 2, . . . , N . We define a coloring χ of 3-element

subsets:

χ(i, j, k) = red, if i < j < k and the path i → j → k → i is

clockwise:
j

i k

χ(i, j, k) = blue, if i < j < k and the path i → j → k → i is

counterclockwise:
k

i j

Now, by Theorem 3, there exists an n-element subset of N such that the

above triangles have the same orientations. Consequently, by renaming the

points we have the points 1, . . . , n such that:

whenever i < j < k then the orientation is:

j

i k

The convex hull of these points is a required n-polygon. Indeed we can
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construct this step by step:

1st step:

×

×

1

2

other points

2nd step:

×

×

1

2

× 3

other points

k th step:

×

×

1

2

×
3

××
k − 1

k

other points

So at each step we obtain a convex hull of the ”first points” and the others

are ”outside”.

Next result is an infinitary variant of Ramsey’s Theorem.

Theorem 4. For each finite coloring χ of [N ]2, there exists an infinite subset

A ⊆ N such that [A]2 is monochromatic under χ.

Proof. Very similar to the previous ones. In fact, even notationally clearer,

since the numerical estimates are not needed. As earlier we define, for each

i, sets Si and elements xi ∈ Si as follows:

(i) S1 = N ,

(ii) If Si is defined, we choose xi ∈ Si,

(iii) If xi ∈ Si is defined, set

Tj = {u ∈ Si | χ(xi, u) = j} for colors j.
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These sets define a partition of Si \ {xi}. We choose Si+1 to be one of the

infinite classes of this partition. Now, as in the proof of Theorem 1, the

sequence x1, x2, . . . (by the conditions xj ∈ Sj ⊆ Si+1, xk ∈ Sk ⊆ Si+1 and

χ(xi, u) = constant for u ∈ Si+1) satisfies:

χ(xi, xj) = χ(xi, xk), ∀i < j, k.

Therefore we can define a coloring of X = {x1, x2, . . .} by the condition:

χ∗(xi) = χ(xi, xj), ∀i < j.

Now χ∗ is a finite coloring of an infinite set so that there exists

X ′ = {xi1, xi2 , . . .} ⊆ X and j

such that

|X ′| = ∞

and

χ∗(xis) = j, ∀s.

Then

χ(xis , xit) = χ∗(xis) = j

so that [X ′]2 is monochromatic under χ.

The above proof extends directly to colorings of k-element sests.

Theorem 4 claims that ”Every infinite set contains an infinite (and thus

large) regular subset”. A natural question is whether this infinitary variant

implies a corresponding finite one: ”Every large enough set contains large

(in advance fixed size) regular subset”.

The answer is: not directly, but relatively easily by so-called compactness

principle. We formulate this for k-element sets.

Theorem 5 (Compactness principle). Let k ∈ N and A a family of

finite subsets of N . Assume further that, for any finite coloring of [N ]k,

there exists a subset A ∈ A such that [A]k is monochromatic. Then, for each

number r ∈ N , there exists n0 = n0(r) such that ∀n ≥ n0: For any r-coloring

of [n]k there exists A ∈ A such that [A]k is monochromatic.
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Proof. Assume the contrary that no n0 exists. Then there exists an infinite

sequence of

(5) r-colored subsets of [n]k

such that none of those contains [A]k, A ∈ A, as monochromatic.

Fix the order of elements of [N ]k: [N ]k = {y1, y2, . . .}. Next consider such

sets of (5), where the color of y1 is the same. Some of these sets is infinite.

Now replace (5) by this new infinite set and continue with y2, and so on.

This procedure defines a coloring

χ : [N ]k → {1, . . . , r}.

Then, by the assumption of the theorem, there exists a monochromatic A

under χ. Let t ⊆ N be such that

A ⊆ {y1, . . . , yt}

and

(χ0[n0]
k) an element of (5) determined by yt.

It follows from the construction that

χ(yi) = χ0(yi) for i = 1, . . . , t.

Consequently, A is monochromatic with respect to χ0. Contradiction!

The above compactness principle together with Theorem 4, when applied

to

A = {A | l ≤ A < inf}, l ∈ N

yields

Corollary 1. Let r, l ∈ N . There exists n0 = n0(l, r) such that

∀n ≥ n0 : n −→ (l)r.

What we obtained is a mathematically simpler proof for Theorem 1 with

arbitrary number of colors. However, this method does not give any bound

for the number n, unlike direct combinatorial arguments.
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We have considered so far different variants of just one theorem, Ramsey’s

Theorem and its proof. Actually there are quite a collection of Ramsey-Type

Theorems. We list here a few such results, and will consider two of those in

more details in the next sections.

I Ramsey’s Theorem For each triple (l, r, k), there exists n0 such that

whenever n ≥ n0 and [n]k is r-colored there exists a monochromatic [l]k.

II van der Waerden’s Theorem For each pair (l, r), there exists n0 such

that whenever n ≥ n0 and [n] is r-colored there exists an arithmetic progres-

sion {a0, a0 + d, . . . , a0 + (l − 1)d} ⊆ [n] of length l which is monochromatic.

III Schur’s Theorem For each number r there exists n0 such that whenever

n ≥ n0 and [n] is r-colored there exists monochromatic x, y and z such that

x + y = z.

The above extends as follows. We say that a system of equations is

regular, if for each number r there exists n0 such that whenever n ≥ n0 and

[n] is r-colored the system has a monocromatic solution x1, . . . , xm ∈ [n].

IV Rado’s Theorem An equation

c1x1 + c2x2 + · · · + cnxn = 0

is regular if and only if some of repetition-free sums of the coefficients equals

to zero.

V Hales–Jewett’s Theorem For each pair (r, k), there exists n0 such that

whenever n ≥ n0 and n-dimensional cube

Cn
k = {(x1, . . . , xn) | xi ∈ {0, . . . , k − 1}, 1 ≤ i ≤ n}

is r-colored, it contains a monochromatic line.

VI Graham–Leeb–Rothschild’s Theorem Let F be a finite field with

k elements. Then, for each triple (k, l, r), there exists n0 such that for all

n ≥ n0 the following holds: Let V be n-dimensional vector space over F

and χ an r-coloring of k-dimensional subspaces of V . Then there exists

an l-dimensional subspace of V such that its k-dimensional subspaces are

monochromatic.
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In Theorem V a line is a set of points {x0, . . . , xk−1}, where xi =

(xi1, . . . , xin), satisfying (possibly after reindexing): For each j (1 ≤ j ≤ n)

either x0j = x1j = · · · = xk−1,j ,

or xsj = s for 0 ≤ s < k

and the second condition holds at least once. For example,

{020, 121, 222, 323} and {031, 131, 231, 333}

are lines.
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III van der Waerden’s Theorem

The original van der Waerden’s Theorem, conjectured by I. Schur, is from

the year 1927.

Claim A: If the set N of natural numbers is divided into two parts, one part

contains arbitrarily long arithmetic progressions.

The above can be generalized by

• using r parts, e.g. r-colorings of N ;

• coloring only initial segments.

We obtain:

Claim B: For each pair (k, r) of natural numbers there exists a number

W (k, r) such that if {1, . . . ,W (k, r)} is divided into r parts, one part contains

an arithmetic progression of length k.

The Claims A and B are equivalent (assuming also in A r parts):

Implication B ⇒ A: Clear (since r-coloring of N is that of any initial part).

Implication A ⇒ B: Compactness argument:

Assume the contrary. Then there exists a pair (k, r) such that for all n there

exists an r-coloring of {1, . . . , n} such that it does not contain a monochro-

matic arithmetic progression of length k. This means that there exists an

infinite sequence K1, K2, K3, . . . of such r-colored sets. From this we derive

an r-coloring of N contradicting the claim A:

Since (Ki)i≥1 is infinite and we use only finitely many colors there exists

an infinite subsequence of (Ki)i≥0 where the first elements have the same

color. The procedure can be repeated. Thus we obtain an r-coloring of N .

If Claim A holds for this coloring, then, by the construction, some Ki would

contain an arithmetic progression of length k.

K1 × ��

K2

K3 × �� ��

.

.

.

×

× �� �	
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Next we consider a few first values of W (k, r):

W (2, r) = r + 1: clear

W (3, 2) = 325: (To be read : 325 works here!)

We define

[1, 325] = [1, 5] ∪ [6, 10] ∪ · · · ∪ [321, 325]

= B1 ∪ B2 ∪ · · · ∪ B65

Since r = 2 and |Bi| = 5 there are 25 = 32 different colors for Bi’s. Conse-

quently, there exists t, s with s < t such that

• Bt and Bs have the same color,

• Bt+t−s is defined.

Now consider the three first elements of Bs. Two of those have the same

color, say j and j + d are those elements. Now j + 2d is in Bs. If this has

the same color than j we are done, the progression is even in Bs. Otherwise

we consider the element

j + 2d in Bt+t−s

and we find independently of the color of j + 2d in Bt+t−s, the required

progression:

�� �� × �� �� × ?

? = ×

? = ◦

W (3, 3) = 7 · (2 · 37 + 1) · (2 · 37(2·37+1) + 1) (> 314·37
):

We generalize the above construction in three steps:

First, we divide [1,W (3, 3)] into blocks of size 7(2 · 37 + 1):

B1, B2, . . . , Bt, t = 2 · 37(2·37+1) + 1. Since r = 3 there are 37(2·37+1) different

colorings of these. It follows that there exist two equaly colored blocks

(6) Bi1 ≡ Bi1+d1,
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and moreover,

Bi1+2d is defined.

In the second step we divide each Bi to subblocks of length 7:

Bi,1, . . . , Bi,2·37+1. These subblocks have 37 different colorings, so that as

in step one there exists two equally colored subblocks

(7) Bi1,i2 ≡ Bi1,i2+d2,

and moreover,

Bi1,i2+2d2 is defined inside Bi1 .

In the third step we note that out of four first positions of Bi1,i2 two have

the same color, say

i3 ≡ i3 + d3 = red = •
and moreover,

i3 + 2d3 is inside Bi1,i2 .

If this i3 + 2d3 would be red, we are done. so assume that this color is

blue= �.

We can illustrate our choices as follow: |Bi1 | = 7 · (2 · 37 + 1), |Bi1,i2 | = 7

Bi1: � � �� � � ��
�	

i3

i3 + d3

Bi1,i2

i3 + 7d2

i3 + d3 + 7d2

Bi1,i2+d2

i3 + 2d3 + 14d2

Bi1,i2+2d2

Bi1+d1
: 
 � �
 � � ��

��

Bi1+d1,i2+d2

Bi1+2d1
: ?

Bi1+2d1,i2+d2

Now we consider the block Bi1,i2+2d2 ⊆ Bi1 . By (7)

i3 ≡ i3 + 7d2 = red = i3 + d3 + 7d2 ≡ i3 + d3 = •
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and

i3 + 2d3 ≡ i3 + 2d3 + 4d2 = blue = �.

Now

i3 + 2d3 + 14d2 = yellow = 4

since otherwise we have:

� � �� � � �� ×

× = �

× = •

that is a required arithmetical progression.

By (6),

Bi1 ≡ Bi1+d1

so that the colors in the figure below are as indicated:

� 	 
� � 
 �� ��

i3

i3 + 2d3

i3 + 2d3 + 7d2 + d1

� � �� � � �� ��

i3 + d3 + 7d2 + 7(2 · 37 + 1)d1

m

i3 + 2d3 + 14d2 + 14(2 · 37 + 1)d1

For example, the fourth red in Bi1+d1 is i3 + d3 + 7d2 + 7(2 · 37 + 1)d1.

Now, let us consider the color of

m = i3 + 2d3 + 14d2 + 14(2 · 37 + 1)d1.

Independently what it is we have an arithmetic progression of length 3 as

shown by the lines of the figure.
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The above indicates already the general proof. However, let us consider

it on intuitive level a bit more. More precisely consider the numbers W (3, 4)

and W (4, 3).

W (3, 4): The method is that we force a new color (or the required pro-

gression is found). In this case this is illustrated as follows:

Indeed, 2 is forced by the first inmost block, 3 by the inmost equality, 4 by

the middle level equality and ? to be a new color by the positions of the

blocks.

W (4, 3): Follows from the figure:

In general: W (k, r) has to be chosen so large that

(i) r′-colored progression of length k − 1 is guaranteed, and

(ii) the kth position of the above progression is defined.
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Here r′ is the number of all colorings of blocks of certain length, so r′ is of

form rk.

More concretely the proof of the existence of the numbers W (k, r) is by

double induction. However, there are clear differences to the proof of the

existence of Ramsey’s numbers:

v.d. Waerden:

k
r

1

2

3
...
k

1 2 3 · · · r

×

(W (k, r − 1) &) W (k − 1, r′), r′ � r

⇓

W (k, r)

Ramsey:

1

2

3
...
k

1 2 3 · · · l

R(k, l − 1) & R(k − 1, l)

⇓

R(k, l)

In the above approach the dificulty in the general proof is to find proper

notation. This can be avoided by proving a more general result. At the

same time the proof becomes shorter but less intuitive.

We proceed as follows. Consider the set [0, l]m. We define m + 1 disjoint

subsets of it, so-called l-equivalence classes X(i), i = 0, . . . ,m, as follows:

X(i) = {(x1, . . . , xm) ∈ [0, l]m | x1 = · · · = xi = l & xi+1, . . . , xm 6= l}

Clearly,

X(i) ∩ X(i′) = ∅ if i 6= i′

and
m⋃

i=0

X(i) ( [0, l]m

Example 10. We have:

m = 1, l ∈ N:

X(0) X(1)

=

0 l

m = 2

l = 4
:

i=2

i=1
i=0

0 1 2 3 4

We shall prove:
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Claim S(l,m): For each number r there exists a number N(l,m, r) such

that, for any r-coloring,

χ : [1, N(l,m, r)] → [1, r]

there exist positive integers a, d1, d2, . . . , dm such that

|χ(a +
m∑

i=1

xidi)| = 1 for (x1, . . . , xm) ∈ X(i)

for i = 0, . . . ,m.

Note that N(l, 1, r) = W (l, r) since then m = 1 and xi goes from 0 to

l − 1, that is

χ(a) = χ(a + d) = · · · = χ(a + (l − 1)d).

Theorem 6. S(l,m) holds true for all l and m.

Proof. Clearly S(1, 1) is obvious.

We show

(i) S(l,m′), m′ ≤ m =⇒ S(l,m + 1), and

(ii) S(l,m) ∀m =⇒ S(l + 1, 1).

Now fix r arbitrarily.

Implication (i). Assume (i.h.) that

M = N(l,m, r) and M ′ = N(l, 1, rM )

We claim that we can choose:

N(l,m + 1, r) = M(M ′ + 1).

So let

χ : [1, (M ′ + 1)M ] → [1, r]

be an r-coloring. This induces a coloring

χ′ : [1,M ′] → [1, rM ]

by

χ′(k) = χ′(k′) ⇐⇒ χ(kM + j) = χ(k′M + j) for j ∈ (0,M ].
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Clearly, χ′ is well defined.

By i.h. there exists a′ and d′ such that

χ′(a′ + xd′) = constant on x ∈ [0, l − 1] (or x = l).

Now we can apply i.h. S(l,m) to the interval [a′M + 1, (a′ + 1)M ]: There

exist numbers a, d1, . . . , dm such that

a +

m∑

i=1

xidi ∈ [a′M + 1, (a′ + 1)M ] for xi ∈ [0, l]

and

χ(a +
m∑

i=1

xidi) = constant on l-equivalence classes (m + 1).

We set

d′
i = di for i ∈ [1,m]

and

d′
m+1 = d′M.

Then we have to show that

(8) χ(a +
m+1∑

i=1

xidi) = constant on l-equivalence classes (m + 2).

First in the class where xm+1 = l there is just one element, namely (l, . . . , l),

so that (8) holds. In the other classes xm+1 gets the values 0, . . . , l − 1. Let

us consider such a fixed class. By the choice of a′ and d′

χ′(a′ + xm+1d
′) = χ′(a′) for xm+1 = 0, . . . , l − 1.

Consequently, by the definition of χ′

(9) χ((a′+xm+1d
′)M +j) = χ(a′M +j) for j ∈ (0,M ] and xm+1 ∈ [0, l−1].

But by the choice of the numbers a and di we have:

(10)

{

a +
∑m

i=1 xidi = a′M + j for some j = 1, . . . ,M

χ(a +
∑m

i=1 xidi) = constant in l-equivalence classes
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Therefore (8) follows from (9) and (10):

a +
m+1∑

i=1

xid
′
i = xm+1d

′M + a +
m∑

i=1

xidi = (a′ + xm+1d
′)M + j

Implication (ii). We claim that we can choose

N(l + 1, 1, r) = N(l, r, r) + C.

So consider the coloring

χ : [1, N(l, r, r) + C] → [1, r].

By i.h., there exists numbers a, d1, . . . , dr such that

a +
r∑

i=1

xidi ≤ N(l, r, r) for xi ∈ [0, l]

and

(11) χ(a +
r∑

i=1

xidi) = constant in l-equivalence classes (r + 1).

Now, by PHP there exist numbers u and v, 0 ≤ u < v ≤ r, such that

(12) χ(a +
u∑

i=1

ldi) = χ(a +
v∑

i=1

ldi).

Denote

a′ = a +
u∑

i=1

ldi

and

d′ =
v∑

i=u+1

di.

There exists just 2 (l + 1)-equivalence classes (since m = 1): [0, . . . , l] and

{l + 1}. The latter is singleton so that for sure

(13) χ(a′ + xd′) is constant.

Note that in order to make (13) defined we use C in the choice of N(l+1, 1, r).

What remains to be shown is that

(14) χ(a′ + xd′) = constant for x = 0, . . . , l.

28



Now, by (12), we have

χ(a′ + 0d′) = χ(a +
u∑

i=1

ldi) = χ(a +
v∑

i=1

ldi) = χ(a′ + ld′).

In the l-equivalence class

{(x1, . . . , xr) | xi = l for i ≤ u and xj ∈ [0, l − 1] otherwise}

(11) is valid. So for any x ∈ [0, l − 1], we have:

χ(a′ + 0d′) = χ(a +
u∑

i=1

ldi +
r∑

i=u+1

0di)

= χ(a +
u∑

i=1

ldi +
v∑

i=u+1

xdi +
r∑

i=v+1

0di)

= χ(a′ + xd′).

Hence (14) and the whole induction step has been proved.

The following example is important to notice.

Example 11. van der Waerden’s Theorem tells that if N is finitely col-

ored it contains arbitrarily long monochromatic arithmetic progressions. A

natural question is: Does it contain infinite monochromatic arithmetic pro-

gressions? In other words is ”infinite monochromatic arithmetic progression”

an unavoidable regularity?

The answer is ”no”. A simple argument for that is as follows. Each

infinite arithmetic progression AL∞ is specified by a pair (a, d), where a

corresponds the threshold and d the period, that is

(a, d) ↔ {u ∈ N | u = a + jd for some j ∈ N}.

It follows that the cardinality of all infinite arithmetic progressions is denu-

merable, and therefore they can be enumerated:

(a1, d1), (a2, d2), (a3, d3), . . .

But the cardinality of all r-colorings, with r ≥ 2, is nondenumerable. Hence,

we can define an r-coloring χdiag : N → [1, . . . , r] such that:

for any i, two points of (ai, di) have different color.
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It follows, that no infinite arithmetic progression is monochromatic under

χ
diag

.

Van der Waerden’s Theorem has the following extension, see Lothaire

p. 41–43.

Theorem 6’. Let S ⊆ Nm with m > 1. Then , for any r-coloring of Nm,

there exist a number d and a vector a ∈ Nm such that a + dS is monochro-

matic.

By choosing S = {0, . . . , l − 1} we obtain van der Waerden’s Theorem.

Example 12. In the case m = 2 and r = 2 we have the following situation:

×
×

×
×

× ×
×

×

×

×
×

×
×

×
×

×

×
× ��

��

��

�� ×

×

×
×

S

a

a + 2S

We continue by giving a completely different proof, a topological one, to

van der Waerden’s Theorem, see Lothaire (original proof is by Fürstenberg

and Weiss, 1978). We shall prove:

Claim B If N is divided into r classes one of those contains an arbitrarily

long arithmetic progression.

The proof goes in several steps. First let

C = {C1, . . . , Cr} be a partition of N,

l a natural number > 1, and

E = {u | u : Z → [1, . . . , r]}.

We define in E a distance d by

d(u, u′) = inf{ 1
q+1

| u(n) = u′(n) for |n| < q}.
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This makes E a metric space; for example d(u, u′) = 0 iff u = u′. E is also

compact. (Each sequence has a converging subsequence).

We continue by defining v : Z → [1, . . . , r]:

v(n) =

{

t if n ≥ 0 and n ∈ Ct

1 if n < 0.

Our goal is to show that, for any l > 0, there exist natural numbers n and

m such that

(∗) v(m) = v(m + n) = · · · = v(m + ln),

that is Cv(m) contains an arithmetic progression of length l + 1.

Now, let S : E → E be a shiftoperator

(Su)(n) = u(n + 1) ∀n ∈ Z.

Then S is continuous and bijective, that is a homeomorphism. We set

X = lim{Sn(v) | n ≥ 0}.

Since E is compact, X 6= ∅. Further by the definition of X it is closed, and

hence compact.

We show

Lemma 1 (By Zorn’s Lemma). There exists K ⊆ X such that K 6= ∅,
K is closed, and S(K) = K and, moreover, K is minimal (that is no proper

subset of K satisfies these conditions).

Proof. Let E be the family of sets satisfying the conditions of Lemma 1. It

is nonempty (X ∈ E) and partially ordered by inclusion relation. Let further

F = {Fi | i ∈ I}

be a totally ordered subset of E. We set

F =
⋂

i∈I

Fi.

Clearly, F ⊆ X and S(F ) = F . To show that F 6= ∅ we assume the contrary:

F = ∅. Then X \ F = X, so that

⋃

i∈I

(X \ Fi)
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is an open cover of X. Hence, by the compactness of X, a finite subcover

covers it. This, however, is a contradiction since F is totally ordered so that
⋂

finite Fi is nonempty.

It follows that F is a lower bound in F, and hence by Zorn’s lemma, F

contains a minimal element.

Now, assume that K is a minimal set guaranteed by Lemma 1. We prove

the following core result:

Key Lemma For each ε > 0, there exist z ∈ K and n > 0 such that

d(Snz, z) < ε, d(S2nz, z) < ε, . . . , d(S lnz, z) < ε.

Proof. By induction on l.

l = 1. Let x ∈ K. By the compactness, the sequence (Snx)n≥0 has an

accumulation point in K. Consequently, if ε > 0, there exist i < j such that

ε > d(Sjx, Six) = d(Snz, z),

where n = j − i and z = Six.

To conclude the induction step we need two lemmata.

Lemma 2. For each ε > 0 there exist integers k1, . . . , kN such that

∀a, b ∈ K : min
1≤i≤N

d(Skia, b) < ε.

Proof. We make use of the minimality of K. This implies that the only

subsets of K which are closed and stable (e.g. satisfy S(Y ) = Y ) are K and

∅. Since the notions of ”open” and ”closed” are complementary we may

replace ”closed” by ”open” in our considerations.

So let ω be an open subset of K. Then

(15)
⋃

n∈Z

Snω

is open (as a union of open sets), and clearly stable. Therefore it equals to

K, and so by the compactness of K it has a finite subcover from (15).
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Let now {ω1, . . . , ωN} be a cover of K by open balls of the radius < ε
2
.

It follows from the above that, for each i = 1, . . . , N , there exist integers ri

and ni,j such that

{Sni,jωi | 1 ≤ j ≤ ri}

is an open cover of K.

Now, take arbitrary elements a, b ∈ K. Then b ∈ ωi, for some i. Further

a ∈ Sni,jωi for some j.

Consequently,

S−ni,ja ∈ ωi

and so

d(S−ni,ja, b) < ε.

Therefore Lemma 1 follows from the inequality

min
1≤i≤N

(

min
1≤j≤r

d(S−ni,ja, b)

)

< ε.

The other lemma is as follows:

Lemma 3. For each ε > 0 and a ∈ K, there exist b ∈ K and n > 0 such

that

d(Snb, a) < ε, . . . , d(S lnb, a) < ε.

Proof. By Lemma 2, there exist integers k1, . . . , kN such that for all a, b ∈ K:

min
1≤i≤N

d(Skia, b) <
ε

2
.

Since the functions Ski are continuous, and therefore also uniformly contin-

uous in K, there exists η > 0 such that

d(a, a′) < η =⇒ d(Skia, Skia′) <
ε

2
for all i = 1, . . . , N.

Now, by induction hypothesis, there exist a0 ∈ K and n > 0 such that

d(Sna0, a0) < η, . . . , d(S(l−1)na0, a0) < η.
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By setting b0 = S−na0 we obtain

d(Snb0, a0) < η, . . . , d(S lnb0, a0) < η,

so that

d(Sn+kib0, S
kia0) <

ε

2
, . . . , d(Sln+kib0, S

kia0) <
ε

2

for i = 1, . . . , N . Further for each a ∈ K there exists an index j such that

d(Skja0, a) <
ε

2
.

By choosing b = Skjb0 we obtain

d(Snb, a) < ε, . . . , d(S lnb, a) < ε,

as was to be shown.

Proof of Key Lemma. Let a0 ∈ K. We construct inductively

points: a1, . . . , at ∈ K;

nonnegative integers: n1, . . . , nt;

positive numbers: ε1, . . . , εt < ε

such that

(16) d(Sniai, ai−1) <
εi

2
, . . . , d(Slniai, ai−1) <

εi

2
.

To start with we set ε1 = ε
2
. Then, by Lemma 3, there exist a1 ∈ K and

n1 > 0 such that (16) holds for i = 1. Now, assume that (16) holds for

0 ≤ i ≤ q. Then we choose εq+1 < ε
2

such that

(17) d(a, a′) < εq+1 =⇒ d(Snqa, Snqa′) <
εq

2
, . . . , d(Slnqa, Slnqa′) <

εq

2
.

Then, by Lemma 3, there exist aq+1 ∈ K and nq+1 such that (16) holds for

i = q + 1.

As a matter of fact, we claim that, for 0 < i ≤ j, we have

(18) d(Snj+···+niaj, ai−1) < εi, . . . , d(Sl(nj+···+ni)aj , ai−1) < εi.
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This is seen by induction on j − i:

j − i = 0: This is in (16).

By induction hypothesis we have:

d(Snj+···+ni+1aj, ai) < εi+1, . . . , d(Sl(nj+···+ni+1)aj , ai) < εi+1

Consequently, by (17),

d(Snj+···+niaj , S
niai) <

εi

2
, . . . , d(Sl(nj+···+ni)aj , S

lniai) <
εi

2
.

From this and (16) the condition (18) follows.

To conclude, by the compactness of K, there exist indices i < j such that

d(ai, aj) <
ε

2
,

and therefore by (18)

d(Snaj, aj) < ε, . . . , d(S lnaj, aj) < ε,

where n = ni+1 + · · · + nj . Hence the Key Lemma is proved.

Now, finally, we are ready for

Proof of Claim B. By the Key Lemma, there exist z ∈ K and n > 0 such

that

d(Snz, z) <
1

2
, . . . , d(Slnz, z) <

1

2
.

Hence, by the definiton of the distance function

z(0) = Snz(0) = · · · = S lnz(0),

and so

(19) z(0) = z(n) = · · · = z(ln).

But by the construction

z ∈ K ⊆ lim{Snv | n ≥ 0}.

Therefore for some m > 0 we have

d(Smv, z) <
1

ln + 1
.
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Consequently,

z(i) = Smv(i) = v(m + i) for 0 ≤ i ≤ ln.

Hence (∗) follows from (19). So the proof is completed

The above topological method can be used to prove also other Ramsey

type theorems – also some which no other proof is known.
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IV Numerical estimates

In this section we estimate van der Waerden numbers, as well as Ramsey

numbers. In doing so we consider so-called probabilistic argument of Erdös

to conclude the existence of certain type of graphs. Let us denote

Wl(r) = W (l, r),

the number obtained by our construction! As we observed

W2(r) = r + 1.

The argument to compute Wl+1(r) was that assuming Wl(r), for all r, we

forced a new color for a particular element, or (l + 1)-progression was found.

This process could be repeated at most r times. In each step the requirements

were

• l-progression is guaranteed for the considered number of colors;

• (l + 1)st element (block) is defined.

Here:

(i) The sequence of length Wl(r) guarantees an l-progression, and that of

Wl(r) + Wl(r) − 1 in addition that (l + 1)st element is defined.

× × × × ��

l-progression

Wl(r) Wl(r) − 1

(ii) Now, we color blocks of length 2Wl(r) − 1, so that there are r2Wl(r)−1

colors. A new color (or (l + 1)-progression) is forced, if the number of

blocks equals to

2Wl(r
2Wl(r)−1) − 1

× × × × �� ≡ × × × × �� ≡ × × × × �� ≡ × × × × �	 
�

l-progression
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(iii) We proceed r times, when we cannot any more choose a new color so

that

”(l + 1)-progression is guaranteed”.

We define

c1 = 2Wl(r) − 1,

c2 = 2Wl(r
c1) − 1,

...

ci+1 = 2Wl(r
ci) − 1

Then the lengths of the initial parts of N are

c1 (after (i)),

c2 × the length of the blocks = c2 × c1 (after (ii)),

cr × the length of the blocks in the previous step (after (iii)).

= cr × cr−1 × · · · c1

Hence, can be shown that

Wl+1(r) ≥ Ackermann(l − 1),

where

Ackermann(n) = fω(n) = fn(n),

where fi’s are defined as follows:

(20)





f1(x) = 2x, and

fi+1(1) = 2

fi+1(x + 1) = fi(fi+1(x))

or







f1(x) = 2x

fi+1(x) = f
(x)
i (1)

(apply previous x times)

(Here f
(x)
i means iterating x times.)

So we have

f1(x) = DOUBLE(x) = 2x

f2(x) = EXPONENT(x) = 2x

f3(x) = TOWER(x) = 222···
2

(x 2’s in a tower!)

f4(x) = WOW!

In the table form we have:
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1 2 3 4 5 6 7

Double 2 4 6 8 10 12 14 · · ·
Exponent 2 4 8 16 32 64 · · ·
Tower 2 4 16 65536 265536 · · ·
Wow 2 4 65536 Wow · · ·
f5 2 4 Wow · · ·
Ackermann 2 4 16 Wow · · ·

One can show that the Ackermann function is not primitively recursive.

Hence, our approach does not give primitively recursive upper bound for

Wl+1(r). On the other hand, Shelah proved that

Wl(r) ≤ Wow(l + 2).

The known exact values for van der Waerden numbers are

W (3, 2) = 9 W (3, 3) = 27

W (4, 2) = 35 W (3, 4) = 76

W (5, 2) = 178.

Next we search lower bounds for Ramsey numbers R(k, l). Not only be-

cause of the results, but even more before the techniques used. This method,

so-called probabilistic argument (of Erdös), does not allow to construct a

graph avoiding red Kk and blue Kl, but shows that such a graph exists!

Theorem 7. R(k) > 2
k
2 − 1.

Proof. We show first that

(21)

(
n

k

)

21−(k

2) < 1 =⇒ R(k) > n.

In other words if the above inequality holds, then there exists 2-colored com-

plete graph of size at least n not containing a complete monochromatic sub-

graph of size k (Here, of course, edges are colored).

Let us consider a random 2-coloring of Kn. So the color of an edge is

defined by coin flipping, and the coloring of the graph by the sequence of

length
(

n

2

)
of such coin flippings. Therefore,

(22) P [(i, j) = red] =
1

2
,
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and the color of each edge is independent of the colors of other edges. So the

number of colorings and its probability are

2(n

2) and 2−(n

2),

respectively. Now fix subgraph S with |S| = k. Further let

AS be an event ”S is monochromatic”.

Then

P (AS) = 2 · 2−(k

2) = 21−(k

2).

On the other hand, the event

(23) ”Some k-element S is monochromatic” ≡
∨

|S|=k

AS

Therefore

P (
∨

|S|=k

AS) ≤
∑

|S|=k

P (AS) ≤
(

n

k

)

21−(k

2) < 1

But this means that (23) is not always true, so that some 2-coloring of Kn

does not contain a monochromatic subgraph of size k. Hence (21) is proved.

It remains to be proved that the left hand side of (21) is true when

n = 2
k
2 − 1.

This is straightforward:

(
n

k

)

≤
(

2
k
2

k

)

=
2

k
2 !

k!(2
k
2 − k)!

=
2

k
2 · · · (2 k

2 − k + 1)

k!

≤ (2
k
2 )k

k!
=

2
k2

2

k!
≤ 2

(k+2)
2

k!
2

(k2
−k)
2

−1

=
2 · 2 k

2

k!
2(k

2)−1
k≥3

≤ 2(k

2)−1.

So if k ≥ 3 and n ≤ 2
k
2 − 1, then

(
n

k

)

< 2(k

2)−1

proving the left hand side of (21). The case k = 2 is easy to verfy.
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In fact, one could (by improving the estimate of the left hand side of (21))

conclude that

R(k) > k · 2 k
2

[
1

e
√

2
+ o(1)

]

.

On the other hand, see Exc. 7/II, for some constant c,

R(k) < c
4k

√
k
.

It follows that

√
2 ≤ lim inf

k→∞
R(k)

1
k ≤ lim sup

k→∞
R(k)

1
k ≤ 4.

It is not known wheather the limit limk→∞ R(k)
1
k exists.

Theorem 7 does not require equal probabilities:

Theorem 8. Let p ∈ [0, 1] and
(

n

k

)

p(k

2) +

(
n

l

)

(1 − p)(
l

2) < 1.

Then R(k, l) > n.

Proof. In the above method we choose

P [(i, j) is red] = p

Let S with |S| = k and T with |T | = l be fixed complete subgraphs of Kn.

Further let AS and AT be the events

AS : ”S is red”

AT : ”T is blue”.

Then the event

”Kn contains red Kk or blue Kl”

is

E =
∨

|S|=k

AS ∨
∨

|T |=l

AT

and its probability is

P (E) ≤
(

n

k

)

p(k

2) +

(
n

l

)

(1 − p)(
l

2) < 1.

Therefore E is not always true, so the theorem follows.
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V Hales-Jewett Theorem

In this section we prove a generalization of van der Waerden’s Theorem, so-

called Hales-Jewett Theorem. It captures the combinatorial core of vdWT.

In this theorem we color arbitrary sequences instead of sequences of numbers.

We need some terminology. The n-cube over T = {0, . . . , t − 1} is

Cn
t = {(x1, . . . , xn) |xi ∈ T}.

So |Cn
t | = tn. A line in the n-cube Cn

t is a set

{x̄0, . . . , x̄t−1} ⊆ Cn
t with x̄i = (xi1, . . . , xin)

such that for each j ∈ {1, . . . , n}, one of the following holds

(i) x0j = x1j = · · · = xt−1,j or

(ii) xsj = s for x = 0, . . . , t − 1,

and, moreover, (ii) holds at least for one value of j. Note that line is a set of

vectors, and not sequence of those.

Example 13. In C2
3 = {00, 01, 02, 10, 11, 12, 20, 21, 22} the sets

◦: {00, 01, 02},
×: {01, 11, 21},
�: {00, 11, 22}

are lines, but

lg = {02, 11, 20}
is not.

2

1

0 1 2

��

��

����

��

��

× × ×

In the definition of a line: we want to have a combinatorial line and not

a geometric one. Indeed, lg is not accepted since if instead of {0, 1, 2} we

would use {0, 1, 3} with normal metric lg is not any more a geometric line.
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In C3
4 again sets

l◦: {020, 121, 222, 323},
l�: {030, 031, 032, 033},
l4: {301, 311, 321, 331}

are lines, while

{300, 211, 112, 003}
is not.

��

��

��

��

��

��

��

��

��

��

��

��

As an intuitive explanation a line is a set of vectors, where some compo-

nents are fixed and the others go simultaneously from 0 to t − 1. (suitably

ordered) In particular our combinatorial line is independent of the underlying

set T , so we fix

T = {0, . . . , t − 1}.

Let 1 ≤ k ≤ n. We define k-dimensional subspace of Cn
t as follows. Let

(24) {1, . . . , n} = B0∪̇B1∪̇ · · · ∪̇Bk, Bi 6= ∅ i = 1, . . . , k

and

f : B0 → {0, . . . , t − 1}.

Define

f̂ : Ck
t → Cn

t

by

f̂(y1, . . . , yk) = (x1, . . . , xn),

where
xi = f(i) if i ∈ B0,

xi = yj if i ∈ Bj.

Now the k-dimensional subspace is the range of f̂ for some function f and

some partition (24).

Example 14. Let t = 3, n = 7 and k = 2. Further set

{1, 2, . . . , 7} = B0∪̇B1∪̇B2 = {6, 7}∪̇{1, 2}∪̇{3, 4, 5}
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and

f(6) = 2 and f(7) = 0.

Now f̂ : {y1, y2} → {x1, . . . , x7} is as follows:

00 7→ 00 000 20 10 7→ 11 000 20 20 7→ 22 000 20

01 7→ 00 111 20 11 7→ 11 111 20 21 7→ 22 111 20

02 7→ 00 222 20 12 7→ 11 222 20 22 7→ 22 222 20

So here the computed 9 vectors constitute 2-dimensional subspace S of C7
3 .

Each row and column corresponds a line in C7
3 .

As we defined the subspaces of Cn
t correspond to ordered partitions of the

set {1, . . . , n} together with the mappings f

B0∪̇B1∪̇ · · · ∪̇Bt, f : B0 → T.

Clearly, the actual values of T are meaningless. Note also that 1-dimensional

subspaces of Cn
t are presicely the lines of Cn

t :

”f fixes the components determined by B0 and B1 makes the

others to grow simultaneously.”

In above example:

B0 := B0∪̇B2, B1 := B1 and f(3) = f(4) = f(5) = 0

The considered subspace S corresponding to first row is isomorphic with C2
3

where the isomorphism is given by

ϕ : S → C2
3 , ϕ(aabbb02) = ab.

We shall prove:

Theorem 9 (Hales-Jewett, 1963). For each r, t, there exists a number

N ′ = HJ(r, t) such that, for N ≥ N ′, we have: If CN
t is r-colored, then CN

t

contains a monochromatic line. (Here, of course, we color components of the

vectors).
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Before the proof let us see how vdWT follows from Theorem 9. We search

for an arithmetic progression of length t. Let a satisfy

1 ≤ a < tN

and write

a =
N−1∑

i=0

ait
i (t-aric presentation of a).

We associate this with N -dimensional vectors

a ↔ (a0, . . . , aN−1), ai ∈ {0, . . . , t − 1}.

Clearly, this is a bijection.

Let now

χ : [N ] → {1, . . . , r}

be an r-coloring. This determines an r-coloring of the N -cube CN
t . Now

when N is large enough, this determines a monochromatic line of CN
t , say

x̄0, x̄1, . . . , x̄t,

{

x̄i = {xi1, . . . , xit

xij ∈ {0, . . . , t − 1}.

So in the vectors x̄i some components are constant, and the others grow

simultaneously. For example, if N = 5, t = 4 we might have

x̄0 x̄1 x̄2 x̄3

01020 11121 21222 31323

Then x̄i’s constitute the arithmetic progression, where the difference of the

consecutive elements is

1 + t2 + t4.

Example 15. (Tic-tac-toe) This game with any

number r of players on the large enough cube CN
t

never ends with a draw! This follows directly from

HJT. Note that the above holds even for combina-

torial lines and so for sure also for geometric lines.

In C2
3 with two players this, of course is not true.

×

× ×
×

��

��

��
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Proof of Theorem 9. We first recall the equivalence classes of Theorem 6.

For each 0 ≤ i ≤ n the ith equivalence class consists of the vectors

(x1, . . . , xn) ∈ Cn
t+1, where x1, . . . , xn−i 6= t, xn−i+1 = · · · = xn = t.

Consequently, the i rightmost components equal to t, and the others 6= t

(Earlier we used a different enumeration and instead of ”rightmost” ”left-

most”). We call a coloring of Cm
t+1 layered if it is constant in the above

equivalence classes. Further a k-dimensional subspace is layered, if its color

is constant, when it is identified with canonical k-cube Ck
t+1. (When talking

about layered subspaces we assume that the coloring is given). A line is

layered if its t first components are colored with the same color.

In Example 14 S ' C2
2+1 with aabbb20 7→ ab. So being layered means

that the classes

b
a

0

1

0

00 000 20

00 111 20

1

11 000 20

11 111 20

and b
a

2

0

00 222 20

1

11 222 20

are monochromatic.

Example 16. Let t = 27 and Σ = {A,B, . . . , Z, φ}. So Cn
27 = Σ27. We call

w ∈ Σ27 left proper if all φ components are at the end. Now the coloring of

Σ27 is layered iff all left proper words of the same length are similarly colored.

So a line

{αAα | A ∈ Σ}

is layered if the words

AAA,BAB, . . . , ZAZ have the same color,

but φAφ might have any color. Further if the 2-dimensional subspace

{αAββ | α, β ∈ Σ}

is layered, then the words

BALL,MASS and PARR correspond to the same color,

as well as the words

MAφφ, PAφφ and LAφφ.
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What we are going to prove is the following statements depending on t:

HJ(t): For each r, there exists N ′ = HJ(r, t) such that if N ≥ N ′ and CN
t is

r-colored, then it contains a monochromatic line.

LHJ(t): For each r and k, there exists M ′ = LHJ(r, t, k) such that if M ≥ M ′

and CM
t+1 is r-colored, then it contains layered k-dimensional monochro-

matic subspace.

The proofs are by induction on t. More precisely we show

HJ(t) =⇒ LHJ(t), and

LHJ(t) =⇒ HJ(t + 1).

HJ(2) We can choose HJ(r, 2) = r (Exc).

HJ(t) =⇒ LHJ(t). So we assume HJ(t), and conclude LHJ(t) by induc-

tion on k. This is done simultaneously for all values of r as in the proof of

van der Waerden’s Theorem.

k = 1 We set

M ′ = LHJ(r, t, 1) = HJ(r, t).

Indeed, let

M ≥ M ′ and CM
t+1 r-colored.

Now, CM
t consists of these points of CM

t+1 where no component assumes the

value t. So, by our assumption and choice of M and M ′, CM
t contains a

monochromatic line, for example (t = 5, N = 5)

S1 = {11020, 11121, 11222, 11323, 11424}.

Consequently, CM
t+1 contains a monochromatic layered line

S ′
1 = {11020, 11121, 11222, 11323, 11424, 11525}

In S ′
1 the color of 11525 may be different from that of others.

Induction step, k → k + 1. This is the core of the proof. We use the

method of induced colorings. We set

m = LHJ(r, t, k) (i.h.),

s = r(t+1)m

(= # of different colorings of Cm
t+1)
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and

m′ = LHJ(s, t, 1) = HJ(s, t).

Here m might be ”gigantic”, but m′ is still ”unbelievably larger”!! We claim

that we can choose

LHJ(r, t, k + 1) = m + m′.

Let now

χ : Cm+m′

t+1 → {1, . . . , r} (r-coloring of Cm+m′

t+1 ).

We can identify:

Cm+m′

t+1 = Cm
t+1 × Cm′

t+1

That means the product (catenation) of vectors x ∈ Cm
t+1, y ∈ Cm′

t+1 equals to

xy ∈ Cm+m′

t+1 . (For example, (2, 6, 5)(3, 6) = 26536). We define an r-coloring

χ∗ of Cm′

t+1 (so-called induced coloring) by setting

(25) χ∗(x) = χ∗(x′) iff χ(xy) = χ(x′y) ∀y ∈ Cm
t+1.

Consequently, χ∗ is r(t+1)m

= s-coloring. Now, Cm′

t+1 is s-colored, and so by

the choice of m′ there exists a layered monochromatic line

{x0, x1, . . . , xt} ⊆ Cm′

t+1.

Therefore χ∗ colors the vectors x0, . . . , xt−1 ∈ Cm′

t+1 with the same color. But

these vectors do not contain t as any component, so that they are in fact in

Cm′

t .

Now, we color Cm
t+1 by setting

χ∗∗(y) = χ(xiy) ∀i ∈ {0, . . . , t − 1}. (OK by (25)).

So Cm
t+1 is r-colored by χ∗∗. Hence, by the choice of m, induction hypothesis

applies: There exists k-dimensional layered (with respect to χ∗∗) subspace

S ⊆ Cm
t+1. We set

T = {xis | 0 ≤ i ≤ t, s ∈ S} ⊆ Cm′+m
t+1 .

Let the equivalence classes of S be S0, S1, . . . , Sk. Then the equivalence

classes of T are

Tj = {xis | 0 ≤ i < t, s ∈ Sj} for j = 0, . . . , k
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and

Tk+1 = {xtsk}, where Sk = {sk}.

Consider now the elements

xi1s, xi2s
′ ∈ Tj, j = 0, . . . , k.

Then

χ(xi1
s) = χ∗∗(s) = χ∗∗(s′) = χ(xi2

s′)

def. of χ∗∗

S layered under χ∗∗ and s and s′ in the same class.

Consequently, T is (k + 1)-dimensional layered subspace of Cm+m′

t+1 with re-

spect to χ. Hence, the implication HJ(t) =⇒ LHJ(t) has been proved.

Some intuition of the above explaining why the number n is so huge.

Here the procedure is done in k steps. We try to choose

M = LHJ(r, k, t)

so huge that we can write,

M = m′
1 + m1,

where m1 is ”gigantic” and m′
1 ”even much more larger”. Writing

C
m′

1+m1

t+1 = C
m′

1
t+1 × Cm1

t+1

r-coloring of it induces s-coloring for C
m′

1
t+1. Here s � m1, but m′

1 � s. As-

suming m′
1 large enough Cm′

t+1 has a layered monochromatic line with respect

to s-coloring:

L1 = {x(1)
0 , . . . , x

(1)
t }

In the set

L1 × Cm1
t+1
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the original color of the point x
(1)
i is independent of i, if i 6= t. Next we color

y ∈ Cm1
t+1 (new coloring)

by the color of x
(1)
i y when i 6= t. Since m1 is ”gigantic” we write

m1 = m′
2 + m2,

where m′
2 � m2 and m2 is still ”gigantic”. Now we have an r-coloring of the

cube

Cm1
t+1 = C

m′

2
t+1 × Cm2

t+1

inducing an s-coloring of C
m′

2
t+1 and hence, assuming m′

2 large enough, a lay-

ered monochromatic line in C
m′

2
t+1:

L2 = {x(2)
0 , . . . , x

(2)
t }.

In the set

L1 × L2 × Cm2
t+1

the color of the point

x
(1)
i x

(2)
j y

is independent of i, if i 6= t, and independent of i and j, if i 6= t and j 6= t.

Continuing the procedure k times a k-dimensional layered subspace is found

for large enough value of M .

What remains is the implication:

LHJ(t) =⇒ HJ(t + 1).

Claim. Any layered k-dimensional subspace colored with at most k colors

contains a monochromatic line.

Proof of Claim. All ordered k-dimensional subspaces are isomorphic. So

it is enough to look at the space Ck
t+1. For ilustration let k = 2 and t = 4.

The equivalence classes are:
�� �� �� ��

× × × ×

× × × ×

× × × ×

× × × ×

∗

?

?

?

?

So if × = ◦, there exists a monochromatic column,

◦ = ∗, there exists a monochromatic row,

× = ∗, there exists a monochromatic diagonal,

Hence, in any case a line since the number of colors

≤ k = 2.
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In general, the argument goes as follows. Let Ck
t+1 be layered subspace

and the points xi, 0 ≤ i ≤ k, defined as follows:

xi = (xi1, . . . , xik) with xij =

{

t if j ≤ i

0 if i < j
.

For example, in C2
5 : {00, 40, 44}. By PHP, there exists u < v such that

xu and xv have the same color, say red. Then the line

{y0, . . . , yt},

where

ys = (ys1, . . . , ysk) with ysi =







t if i ≤ u

s if u < i ≤ v

0 if v < i

is red. In the above example in C2
5 if 00 and 44 are red, so is

{00, 11, 22, 33, 44}.
Now the required implication follows from the Claim:

Let r be given. We Choose N ′ = LHJ(r, t, r) (by assumption), and claim

that N ′ such chosen works for HJ(r, t + 1). Consider the cube

CN
t+1 with N ≥ N ′

and its r-coloring. Then, by the choice of N , CN
t+1 contains r-dimensional

layered subspace, and therefore, by Claim, a monochromatic line.

This ends the proof of Hales-Jewett Theorem.

Actually, via the isomorphism

Cns
t ' Cs

tn

Hales-Jewett Theorem extends straightforwardly (we do not go into the de-

tails) to n-dimensional subspaces:

Theorem 10 (n-dimensional Hales-Jewett theorem). For each num-

bers r, t and n there exists a number N ′ = N ′(r, t, n) such that if CN
t , with

N ≥ N ′, is r-colored, then it contains monochromatic n-dimensional sub-

space.
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VI Shirshov’s Theorem

In this section we prove another ”unavoidable regularity” result. It is formu-

lated for words, e.g. for sequences of symbols taken from a finite alphabet. It

has a lot of applications, for example in semigroup theory and in automata

theory. Intuitively it says that any long enough word is either

(i) ”periodic” in the sense that it contains as a factor a high power, that

is a word of the form un; or

(ii) ”minimal” in a certain precise sense.

We fix some terminology.

Let Σ be a finite alphabet. A word over Σ is any sequence of symbols including

the empty sequence, called empty word denoted by 1. The set of all words

Σ∗ is a monoid under the operation of product or catenation:

u · v = uv.

It is freely generated by the alphabet Σ, that is each w ∈ Σ∗ has the unique

representation as the product of letters (elements of Σ). Similarly Σ+ =

Σ∗ \ {1} is a free semigroup. The length of w is denoted by |w|.
Subsets of Σ∗ are called languages. For a language X ⊆ Σ∗ we can define

X∗ = {x1 · · · xn | n ≥ 0, xi ∈ X}

and

X+ = {x1 · · · xn | n ≥ 1, xi ∈ X}.

Note that 1 ∈ X∗ always. An X-factorization of w ∈ X∗ is a sequences of

words x1, . . . xn ∈ X such that w = x1 · · · xn, depicted as

w:

x1 xn

A language X is a code if each w ∈ X∗ possesses the unique X-factorization,

in other words, X∗ is freely generated by X. A word u is a factor of w if

there exist words p and s such that w = pus. In the case p = 1 (resp. s = 1)
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u is a prefix (resp. suffix ) of w. The prefix of length k of a word w is denoted

by prefk(w) (In the case |w| < k, we set prefk(w) = w). Similarly we define

sufk(w). Let pref(w) denote all prefixes of w.

A word w is a nth power if it is of the form w = un for some word

u. In particular, squares are words of a form u2. Note that powers can be

defined also for rational numbers, e.g. ababa = (ab)2 1
2 , and even for irrational

numbers: w is a ρth power if it is a qth power for some rational q > ρ. If

w = un we say that u is of repetition order n. Finally, a word w is k-free if it

does not contain as a factor any word of repetition order ≥ k. In particular

square-free words do not contain repetitions of any word. e.g. a factor uu.

For Shirshov’s Theorem it is important to order the set of all words. Let

Σ be totally ordered by <. We extend this to Σ∗ as follows:

u < v iff







v = ux with x 6= 1, or

u = pas and v = pbs′ with a < b, where

a, b ∈ Σ, p, s, s′ ∈ Σ∗.

Clearly, < is a total order in Σ∗, so-called alphabetic order.

Facts: The above order < satisfies:

(i) if u < v, then tu < tv for all t ∈ Σ∗;

(ii) if u < v and u 6∈ pref(v), then us < vs′ for all s, s′ ∈ Σ∗.

The illustrations of these cases are as follows:

t
u

v

and
α a

b

β

γ

u

v

s

s′

Words of particular form play an important role in our considerations.

We define

X = a+(Σ \ a)+ ⊆ Σ+.

Then

X∗ = 1 ∪ aΣ∗(Σ \ a)+

= 1 ∪ {w ∈ Σ+ | pref1(w) = a, suf1(w) 6= a}.
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Moreover, each w ∈ X∗ possesses the unique X-factorization:

aabcabcaaabbcab

This means that X is a code.

Now, the order <Σ of Σ∗ induces an order for X which can be extended

to a total order <X of X∗ (or, in fact, 1 ∪ X ∪ X × X ∪ · · · ). But X is a

code, so that <X can be viewed as total order of subset X∗ of Σ∗. Indeed,

we have:

Lemma 4. For each w,w′ ∈ X∗ we have

w <Σ w′ ⇐⇒ w <X w′.

Proof. The implication ⇐ is crucial. Assume that w <X w′. Then either

(i) w′ = ww′′ with w′′ 6= 1, and hence w <Σ w′, or

(ii)

w

w
′

x

y

e.g.

{

w = w1xw2

w′ = w1yw′
2

with x <X y, where

x, y ∈ X,w1, w2, w
′
2 ∈ X∗.

If x = uax′ and y = uby′ with a < b, then w <Σ w′.

If, on the other hand, y = xu, then b = pref1(u) 6= a, so that we have in Σ∗:

w

w
′

x

b
a or 1

So also in this case w <Σ w′

This concludes the proof of ⇐.
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Implication ⇒. Clearly, since <X is a total order, we have

w <Σ w′ =⇒







w =X w′ The first case does not hold.

w >X w′ Neither does the second by above.

w <X w′ Hence the third holds.

Now we are ready to define the notions needed. We say that w ∈ Σ∗ is

n-divided or (n-Σ-divided) if

w = w1 · · ·wn

and, for each permutation σ ∈ Gn, σ 6= id, we have

w < wσ(1) · · ·wσ(n).

We can extend this to n-X-divided words in a natural way.

Example 17. Let x, y ∈ X∗ and xy <X yx. Then xy is 2-X-divided. We

claim that the word xya ∈ Σ∗ can be 3-Σ-divided as follows:

xya = ax′ay′a = a.x′a.y′a

So we have to show, in what ever way we permute the three factors (shown

in the last form), we obtain a word larger than xya: For example

(
1 2 3

1 3 2

)

: ay′ax′a = yxa >Σ xya

(
1 2 3

2 3 1

)

: x′ay′aa = x′yaa
(∗)
> ax′yaa > xya

(∗) since ax′ < x′:

x
′

ax
′

a · · ·
b

a

Actually, the above example extends to:
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Lemma 5. If w ∈ X∗ and is (n − 1)-X-divided, then wa is n-Σ-divided.

Proof. Let w have the (n − 1)-X-division

w = w1 · · ·wn−1.

Consequently,

w < wσ(1) · · ·wσ(n−1) ∀σ ∈ Gn−1, σ 6= id.

Since wi ∈ X we can write wi = aw′
i, and further

wa = aw′
1a · · · aw′

n−1a

= a.w
′

1
a · · ·w

′

n−1
a = u1u2 · · · un.

We claim that this is the n-Σ-division of wa.

Let σ ∈ Gn and

σ̄ = uσ(1) · · · uσ(n).

Clearly, we can decompose σ as

σ = α ◦ τ,

where

α(1) = 1 and τ is a cycle (1, . . . , r).

This holds since: if r = σ−1(1), τ = (1, . . . , r) and α = σ◦τ−1, then σ = α◦τ

and α(1) = σ ◦ τ−1(1) = σ(r) = 1. From our requirement σ 6= id it follows

that

α 6= id or τ 6= id.

We have two cases to be considered:

(i) τ = id. In this case σ = α 6= id. Then

ᾱ = auα(2) · · · uα(n) = aw′
α(2)−1a · · ·w′

α(n)−1a

= wβ(1) · · ·wβ(n−1)a,

where

β(i) = α(i + 1) − 1.
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Now β ∈ Gn−1 and β 6= id. Hence, by our assumption,

w <X wβ(1) · · ·wβ(n−1).

Therefore, by Lemma 4,

w <Σ wβ(1) · · ·wβ(n−1),

and also

wa <Σ wβ(1) · · ·wβ(n−1)a = ᾱ = σ̄.

(ii) τ 6= id, e.g. r ≥ 2. Then

σ̄ = uσ(1)uσ(2) · · · uσ(n)

= uα(2) · · · uα(r)uα(1)uα(r+1) · · · uα(n)

= uα(2) · · · uα(r)auα(r+1) · · · uα(n).

Now, α(2) 6= 1, so that

uα(2) = akbv with k ≥ 0, b 6= a, v ∈ Σ∗.

Then

σ̄ = akbv′, and

ᾱ = uα(1)uα(2) · · · = ak+1bv′′,

and therefore

(∗) ᾱ <Σ σ̄

Now, if α = id, then wa = ᾱ, and hence wa < σ̄. If, on the other hand,

α 6= id, then, by (i), wa <Σ ᾱ, and hence, by (∗), also now wa < σ̄. This

completes the proof of Lemma 5.

Now, we are ready to prove the Shirshov’s Theorem. Here the intuitive

”minimality” is formalized by ”n-divisions”. As in all Ramsey type results

we have considered this is also proved by a double induction, and hence the

bounds are extremely large.
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Theorem 11 (Shirshov, 1957). Let k, p and n be natural numbers and Σ a

totally ordered k-letter alphabet. There exists a number N(k, p, n) such that,

for any w ∈ Σ∗ with |w| ≥ N(k, p, n), either

(i) w contains as a factor a pth power, or

(ii) w contains as a factor an n-Σ-divided word.

Proof. By double induction on n and k. So we fix p to be a constant.

Clearly,

N(k, p, 1) = 1

and

N(1, p, n) = p.

We assume

N(k, p, n − 1) for all k

and

N(j, p, n) for j < k

1

2
...

n

n
k

1 2 · · · k

...

?

: initial values

: ind. hypothesis

? : induction step.

In order to prove the induction step we show:

Claim: N = N(k, p, n) = (p + N(k − 1, p, n))(N(kN(k−1,p,n)+p, p, n − 1) + 1)

Let |w| ≥ N .

We note first that

(i) if w = uw′, with u ∈ (Σ \ a)N(k−1,p,n), then, by i.h., w contains an

n-Σ-divided word or a pth power;

(ii) if w = w′′ap+t, then w contains a pth power.

It follows that w contains a factor w1 such that

|w1| ≥ (p + N(k − 1, p, n)N(kN(k−1,p,n)+p, p, n − 1)

and

w1 ∈ aΣ∗(Σ \ a).

Then we can write

w1 = x1 · · · xr with xi ∈ X = a+(Σ \ a)+,

58



and moreover

xi = aqs with s ∈ (Σ \ a)+.

As in (i) and (ii) we may assume that

q < p and |s| < N(k − 1, p, n).

In particular,

r > N(kN(k−1,p,n)+p, p, n − 1).

We apply i.h. to the alphabet

{x ∈ X | |x| < p + N(k − 1, p, n)}.

Therefore the word x1 · · · xr−1 contains either a pth power or an (n − 1)-

X-divided factor. Hence, by Lemma 5, also the word x1 · · · xr−1a contains

either

• a pth power, or

• an n-Σ-divided factor.

This concludes the proof

Again the numbers N(k, p, n) grow extremely fast:

N(k + 1, p, n) = nk+1 � (k + 1)nk � · · · � (k + 1)k·
·
·
2

.

In some special cases the length of the pth power can be bounded. In

order to prove that we recall that a word ρ is primitive if it is not a proper

integer power of any other word. So aba is primitive while abab is not.

We also recall that u and v are conjugates if there exist words p and q

such that u = pq and v = qp, that is v is obtained from u by moving its prefix

to the end. Of course, each word u has at most |u| different conjugates. And

it is not difficult to see that a primitive word has exactly that many different

conjugates.

Corollary 2. If p ≥ 2n in Theorem 11, then the pth power can be chosen

to be up with |u| < n.
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Proof. Assume that w contains a pth power vp and |v| ≥ n. We can assume

that v is primitive. Then v has at least n different conjugates, say

v1 < v2 < · · · < vn.

Since p ≥ 2n, the word vp contains as a factor (v2)n. Further each v2 contains

each of the vi’s:

v v

vi

Consequently, vp (and hence also w) contains

f = (v1v
′
1)(v2v

′
2) · · · (vnv′

n).

We claim that this is a required n-division.

Let σ ∈ Gn \ {id} and i the smallest index for which σ(i) 6= i. Then

σ(t) = t if t = 1, . . . , i − 1,

σ(i) = j > i,

and so

σ(f) = (v1v
′
1) · · · (vi−1vi−1)(vjv

′
j)g.

But

f < σ(f)

proving the Corollary.

An application to Burnside Problem

Burnside Problem asks whether finitely generated semigroup, all elements

of which generate a finite subsemigroup, is finite. Or formally:

S = 〈Σ〉 = {ai1 · · · ait | aij ∈ {a1, . . . , an}}
card 〈a〉 = card{ai | i ∈ N} < ∞ ∀a ∈ S

}

?
=⇒ card(S) < ∞

This is indeed a crucial problem in algebra. In what follows we give a few

examples of the answers.
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Example 18. Answer is ”no” in general. The solution comes from the

existence of repetition free words (cf. Example 19). Indeed consider the

semigroup

S = {w ∈ {a, b, c}∗ | w is cube-free} ∪ {0}

with the operation

u · v = uv if uv is cube-free,

u · v = 0 if uv contains a cube,

u · 0 = 0 · u = 0.

This, clearly, gives a negative answer to Burnside Problem due to the fact

there exist infinitely many cube-free words over {a, b, c}.

Example 19. Consider the morphism

h :
a 7→ aba

b 7→ abb
.

Then a is a prefix of h(a), and inductively hi(a) is a prefix of hi+1(a) so that

the limit

γ = lim
i→∞

hi(a)

exists. Now note that aab is of the form uauaub and h preserves words of

this form. So for any ε > 0, γ contains a repetition of order larger than 3− ε.

On the other hand, γ does not contain any cubes. This is seen as follows:

First, γ does not contain aaa or bbb. Second, if it contains a cube uuu then

it contains also a shorter cube. Indeed we have one of the following cases

(two others are symmetric to the first case):

u u u

aa aa aa

u u u

ba ba ba

In the first case aa can be covered by h(a) and h(b) just in the unique

way: aa Consequently all u’s are covered in the same way so that h−1(γ)

contains a shorter cube. In the second case the ba can be covered in two

different ways: ba . Now, if the two first occurences are covered in the

same way then, by the length argument, so is the third one, and we are in
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the above case. If these two are covered differently then again, by the length

argument, the third one is covered still differently, that is by ba . However,

this is impossible. 2

Example 20. For Abelian semigroups the answer is trivially ”yes”.

Example 21. For free idempotent semigroups the answer is also ”yes”. This

semigroup is defined as follows: We define a relation idempotently equal in

Σ∗ as follows

u ∼i v iff we can transform u to v by applying rules

x → xx or xx → x for factors finitely many

times.

Note that ∼i is congruence (that is an equivalence relation satisfying:

u ∼i v =⇒ sut ∼i svt for all s, t). Now, the free idempotent semigroup

over Σ is the semigroup of these congruence classes, more formally

S = Σ∗/

∼i
. 2

Example 22. As one of the major results in (combinatorial) group theory

we state that the Burnside Problem has a negative answer for groups, as was

shown by Adian and Novikov.

We conclude with another affirmative answer. We call a semigroup S

permutable, if there exists an n such that, for each s1, . . . , sn ∈ S, there

exists a permutation σ ∈ Gn \ {id} such that

s1 · · · sn = sσ(1) · · · sσ(n).

We shall prove:

Theorem 12. (A. Restivo, Ch. Reutenauer, J. Alg 84). Each finitely gen-

erated permutable semigroup S such that its all elements generate a finite

semigroup is finite.

Proof. Let S = 〈Σ〉, card(〈s〉) < ∞ for all s ∈ S and k = card(Σ). Further

let S be permutable with the value n. Define the morphism

ϕ : Σ∗ → S, ϕ(w) = w ∈ S (the canonical morphism),
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and let N(p) be the number given by the Corollary above. We choose p ≥ 2n

satisfying:

w ∈ Σ∗, |w| < n =⇒ ∃p′ : ϕ(w)p = ϕ(w)p′ with p′ < p.

This is possible, since card(Σ) < ∞ and card(〈s〉) < ∞ for all s ∈ S. Now,

for any s ∈ S, we define

w(s) = the largest with respect to < of the words of

minimal length in ϕ−1(s).

Claim. |w(s)| < N(p) for all s ∈ S.

Proof. Assume the contrary: |w(s)| ≥ N(p).

Then, by the choice of N(p), w(s) contains either

(i) an n-divided word, or

(ii) a pth power xp with 0 < |x| < n.

We show that both of these statements are contradictory.

First assume that w(s) = ux1 · · · xnv, where x = x1 · · · xn is an n-division.

Since S is permutable with value n, there exists σ 6= id such that the

s = ϕ(w(s)) = ϕ(u)ϕ(x1) · · ·ϕ(xn)ϕ(v) = ϕ(u)ϕ(xσ(1)) · · ·ϕ(xσ(n))ϕ(v)

= ϕ(uxσ(1) · · · xσ(n)v).

Consequently, by the choice of w(s),

w(s) > uxσ(1) · · · xσ(n)v,

and therefore

x1 · · · xn > xσ(1) · · · xσ(n).

This is a contradiction since x = x1 · · · xn is an n-division.

Second assume that w(s) = uxpv with |x| < n. Then

ϕ(w(s)) = ϕ(uxpv) = ϕ(u)ϕ(x)pϕ(v) = ϕ(u)ϕ(x)p′ϕ(v)

= ϕ(uxp′v)

with p′ < p. But this contradicts with the minimality of |w(s)|. So the claim,

and hence also the theorem is proved.
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