
Automata and Formal Languages

Spring 2005

Juhani Karhumäki

Preface

Theory of formal languages (or automata) constitutes a cornerstone of theoretical com-
puter science. However, its origin and motivation come from different sources:

1. Switching circuits as models for electrical engineers.

2. Grammars as models for the structure of natural languages (Chomsky, 1956).

3. Models for biological phenomena:
Neural networks which lead to finite automata (McCulloh, Pitts, 1943).
Lindenmayer systems as models for the growth of organisms (Lindenmayer, 1968).

4. Models in different parts of theory of programming languages:
parsing, compiling, text editing, . . .

5. Models for mathematical (and philosophical) questions of computability (Turing,
1936; Post).

The above list also provides examples of applications of formal languages. Other newer
application areas are cryptography and computer graphics.

Formal language theory is part of discrete mathematics having connections to many
other fields:

�
�

�
�Combinatorics �

�
�
�Formal languages

�
�

�
�Algebra

�
�

�
�Logic �

�
�
�Computability

l
l

ll

A
A
A

,
,

,,

�
�

�

In this course we concentrate on languages (e.g. sets of words) described by finite
automata, context-free grammars and Turing machines.

Literature:
Berstel, J.: Transductions and Context–Free Languages, Teubner, 1979.
Harrison, M.A.: Introduction to Formal Language Theory, Addison–Wesley, 1978.
Hopcroft, J.E. and Ullman, J.O.: Introduction to Automata Theory, Languages and

Computation, Addison–Wesley, 1979.
Davis, M. and Weyuker, E.J.: Computability, Complexity and Languages, Academic

Press, 1983.
Lewis, H.R. and Papadimitriou, C.H.: Elements of Theory of Computation, Prentice

Hall, 1981.
Salomaa, A.: Formal Languages, Academic Press, 1973.

i

ii

Wood, D.: Theory of Computation, John Wiley, 1994.
Sipser, M.: Introduction to the Theory of Computation, PWS Publishing Company,
1997.
Kozen, D: Automata and computability, Springer-Verlag, 1997.

Contents

1 Preliminaries 1
1.1 Basic notions of words and languages . 1
1.2 Specifications of languages and language families 5

2 Regular languages 9
2.1 Finite automata . 9
2.2 Properties of regular languages . 15
2.3 Characterizations . 19
2.4 Minimization . 27
2.5 Generalizations of FA . 29
2.6 Finite transducers . 31

3 Context–free languages 37
3.1 Context–free grammars . 37
3.2 Properties of CF languages . 45
3.3 Pushdown automata . 53
3.4 Restrictions and extensions . 62

4 Context–sensitive languages 67

5 Recursively enumerable languages 71
5.1 Turing machines . 71
5.2 Church´s thesis . 79
5.3 Properties of recursively enumerable languages 80
5.4 Undecidability . 84
5.5 Characterizations . 92

Chapter 1

Preliminaries

1.1 Basic notions of words and languages

First we fix some notions and notations of words:

Alphabet Σ: nonempty (finite) set of symbols, like Σ = {a, b}.

Word w: a sequence of symbols, like (a, b, a) = aba.

Σ∗ (resp. Σ+): the set of all finite (resp. finite nonempty) words.

Language L: a set of words, L ⊆ Σ∗.

Empty word 1: the sequence of 0 symbols.

Catenation or product of words:

a1 · · · an · b1 · · · bm = a1 · · · anb1 · · · bm.

Clearly, this is an associative operation, so that (Σ∗, ·) (resp. (Σ+, ·)) is a monoid
(resp. semigroup) having 1 as the unit element. Moreover, they are free, i.e. each word
has the unique presentation as the product of letters. They are called the free monoid
and free semigroup generated by Σ.

Let w, u ∈ Σ∗, ∆ ⊆ Σ, a ∈ Σ and L,K ⊆ Σ∗. We set:

Length of w = |w|: total number of letters in w; |1| = 0.

|w|a : number of a’s in w.

Alphabet of w: alph(w) = {a ∈ Σ | |w|a ≥ 1}.

Factors : u is a factor of w (resp. left factor or prefix, right factor or suffix) if there
exists words x and y such that

w = xuy (resp. w = uy , w = xu).

Factors are proper if they are different from w. In the case of left or right factors we
write:

u = wy−1 and u = x−1w,
as well as

u ≤ w (resp. u < w)

if u is a (resp. proper) left factor of w.

1

1.1 Basic notions of words and languages 2

Reverse of w = a1 · · · an, ai ∈ Σ: wR = an . . . a1.

Factorization of w: any sequence u1, . . . , un of words such that

w = u1 · · · un. (1.1)

(1.1) is L-factorization iff each ui ∈ L. It is natural to write

L∗ = {u1 · · · un |n ≥ 0, ui ∈ L},

and
L+ = {u1 · · · un |n ≥ 1, ui ∈ L}.

Hence, each word in L∗ has at least one L-factorization. If there exists only one such
factorization then L is a code and it freely generates the monoid L∗ (Indeed, L∗ is a
monoid, and a submonoid of Σ∗).

n:th power of w: w0 = 1, wn = (wn−1)w = w(wn−1).

Finally, w ∈ Σ+ is primitive iff it is not a proper power of any word:

w = un =⇒ n = 1 (and hence u = w).

Most of the above notions extends in a natural way to languages:

alph(L) =
⋃

w∈L

alph(w),

L−1K = {u−1w |u ∈ L, w ∈ K}, etc.

Next we prove a few basic combinatorial properties of words:

Theorem 1.1. Words u, v ∈ Σ∗ commute, i.e. uv = vu, iff they are powers of a some
word, i.e. there exists z such that u, v ∈ z∗.

Proof. ⇐: Clear.
⇒: By induction on |uv|.
Case |uv| = 0 is clear: u = v = 1. Assume that |uv| = k. Now

uv = vu (1.2)

which can be illustrated as:
u v

v u

If |u| = |v|, then necessarily u = v, and we can choose z = u. So by symmetry, we may
assume |u| < |v|. Hence there exists t ∈ Σ+ such that

v = ut.

If u = 1 we can choose z = v. Otherwise we can write (1.2) in the form

uut = utu,

or equivalently,
ut = tu. (1.3)

Since |u| 6= 0, |ut| < |uv| and we can apply induction hypothesis to (1.3) to conclude
that there exists z such that u, t ∈ z∗. Hence u, v ∈ z∗, too.

1.1 Basic notions of words and languages 3

Theorem 1.1 characterizes commutation of two words. Similarly we can characterize
the property that words u and v are conjugates, i.e. for some words p and q, u = pq and
v = qp.

Theorem 1.2. Words u, v ∈ Σ+ are conjugates iff

∃z : uz = zv (1.4)

iff ∃z, p, q : u = pq , v = qp and z ∈ p(qp)∗. (1.5)

Proof. Clearly, if u and v are conjugates, they satisfy (1.5), and conversely (1.5) implies
that u and v are conjugates. So it remains to be proved that (1.4) and (1.5) are equiv-
alent.
(1.5) ⇒ (1.4): Clear. Indeed, if u = pq, v = qp and z = p(qp)n, n ≥ 0, then

uz = pq p(qp)n = p qp (qp)n = p(qp)n qp = zv.

(1.4) ⇒ (1.5): Assume that uz = zv. Then for all n ≥ 1:

unz = un−1uz = un−1zv
ind.
=

hyp.
zvn−1v = zvn.

Now, choose n such that
n|u| ≥ |z| > (n− 1)|u|

and consider the equation
unz = zvn. (1.6)

Then necessarily

z = un−1p and zq = un for some p and q.

Now
un = zq = un−1pq , so that u = pq

and, by (1.6) and above,

vn = qz = q(pq)n−1p = (qp)n , so that v = qp.

This completes the proof.

The proof of Theorem 1.1 translates straightforwardly to

Theorem 1.3. Any words u, v ∈ Σ∗ satisfying a nontrivial identity are powers of a
some word.

Theorem 1.3 is a version of so–called Defect Theorem (cf. Lothaire: Combinatorics
of words). It also has an interesting corollary

Theorem 1.4. For each word u ∈ Σ+ there exists a unique primitive word ρ such that
u = ρn for some n ≥ 1.

Proof. Clearly, there exists at least one such ρ. Assume that both ρ and ρ1 are such
words, say ρn = u = ρm

1 . Then ρ and ρ1 satisfies a nontrivial identity

ρ2n = xx = ρ2m
1

so that they are powers of a word, and hence by the primitiveness ρ = ρ1.

1.1 Basic notions of words and languages 4

The word ρ = ρ(u) of the previous theorem is called the primitive root of u.
As the final example of combinatorial properties of words we mention (without a

proof) the following basic periodicity lemma. Here uω denotes the infinite word uu

Theorem 1.5. Let u, v ∈ Σ+. If uω and vω have a common prefix of length |u| + |v| −
gcd(|u|, |v|), then ρ(u) = ρ(v).

A weaker form of Theorem 1.5 is as follows:

Corollary 1.6. If x ≤ uω, x ≤ vω and |x| ≥ |u|+ |v|, then ρ(u) = ρ(v).

Now, we turn from words to languages, i.e. sets of words. There are a number of
natural operations on languages. For languages L,K ⊆ Σ∗ we define:

union : L ∪K

intersection : L ∩K

complement : Σ∗ \ L = L′







Boolean operations

difference : L \K = {w | w ∈ L,w 6∈ K}

catenation or product : LK = {uv |u ∈ L, v ∈ K}

left quotient : L−1K = {u−1v |u ∈ L, v ∈ K}

power : L0 = {1}, Ln = (Ln−1)L

iteration or Kleene star : L∗ =
⋃

i≥0 Li = {u1 · · · un |n ≥ 0, ui ∈ L}

1-free iteration or Kleene plus : L+ =
⋃

i≥1 Li = {u1 · · · un |n ≥ 1, ui ∈ L}.

Operations union, catenation and iteration are called rational. Indeed, they cor-
respond arithmetic operations sum, product and inverse (L∗ = {1} ∪ L ∪ L2 . . . ↔
(1− L)−1).

Two other important operations are morphic and inverse morphic image of a lan-
guage:

h(L) = {h(u) |u ∈ L} ⊆ ∆∗

and

h−1(L) = {v |h(v) ∈ L} ⊆ Σ∗,

where h : Σ∗ → ∆∗ is a morphism, i.e. mapping satisfying

h(uv) = h(u)h(v) , ∀u, v ∈ Σ∗.

We can easily conclude a number of identities on languages, for example

(LM)N = L(MN),

L(M ∪N) = LM ∪ LN,

(L∗)∗ = L∗L∗ = L∗, etc.

1.2 Specifications of languages and language families 5

1.2 Specifications of languages and language fami-

lies

An obvious problem is: How to specify a language? In the case of finite languages the
simplest way is to make a list of all words of a language. For an infinite language this
would not lead to a finite description.

Is is also worth noting that although Σ is finite, Σ∗ is denumerable and, hence the
number of subsets of Σ∗, i.e. languges over Σ is nondenumerable. Consequently, we can
“effectively” describe only very few of all possible languages.

The three methods used in this course to describe languages are as follows:

I. Via certain operations,

II. Via acceptance by an device,

III. Via generation by a grammar.

I. We say that a family L of languages (over Σ) is closed under operation ϕ, if
whenever ϕ is applied to a language in L the result is also in L. Now, one way to define
a family L is to fix certain family of initial languages and certain closure operations,
and say that L constitutes of those languages which are obtained by applying a finite
number of times these oeprations to initial languages. Or more concretely:

Definition 1.1. The family of rational languages over Σ, in symbols Rat(Σ), is defined:

(i) ∅ ∈ Rat(Σ) and {a} ∈ Rat(Σ), for a ∈ Σ,

(ii) if L1, L2 ∈ Rat(Σ), then L1 ∪ L2 ∈ Rat(Σ),

(iii) if L1, L2 ∈ Rat(Σ), then L1L2 ∈ Rat(Σ),

(iv) if L ∈ Rat(Σ), then L∗ ∈ Rat(Σ),

(v) Rat(Σ) is the smallest family satisfying (i)-(iv).

Clearly, (v) can be replaced by

(vi) Rat(Σ) contains only those languages which are obtained from languages in (i) by
applying operations (ii)-(iv) a finite number of times.

Thus each rational language is obtained by applying operations union, catenation
and iteration finitely many times to singleton languages and the empty language. Conse-
quently, we can associate with a rational language a sequence of applications of (ii)-(iv),
in other words, an expression, called rational expression, which describes the initial lan-
guages and applications of the operations. In order to avoid unnecessary parenthesis in
these operations we agree the preference of the operations to be

iteration, catenation, union.

Moreover we identify {a} and a. Then, for example

ab∗ ∪ ba =
(
a(b∗)

)
∪ (ba) , ∅∗ = {1},

and the identity
a(aa)∗ ∪ (aa)∗ = a∗ (= {a}∗)

shows that the representation is not unique.

1.2 Specifications of languages and language families 6

Definition 1.2. Formally rational expressions are defined as:

(i) ∅ and a, for a ∈ Σ, are rational expressions,

(ii-iv) if α and β are rational expressions, so are (α ∪ β), (αβ) and (α∗).

(v) these are all rational expressions.

Now languages defined by rational expressions are defined in a natural way: ∅ defines
empty language, a defines {a} and (α ∪ β) defines the union of those defined by α and
β, etc.

II. We take here only a very simple example. Con-
sider the set of paths in the following labeled graph lead-
ing from the node 1 into itself. The sequence of labels
encountered forms a word over {a, b}, and hence the
above rule defines a language, which is (a+b)∗.

1 2

a

b

a

III. In this method an initial symbol, as well as (substitution) rules how from a word
new words are derived and the language generated consists of those words (of certain
type) which are obtained from the initial symbol by these rules.

For example, if the initial symbol is S and the rules are “S can be replaced by aSb or
1”, formally S → aSb, S → 1, then the set of words in {a, b}∗ obtained is {anbn |n ≥ 0}.
Or more formally:

Definition 1.3. Chomsky grammar, or grammar in short, is a quadruple

G = (V, Σ,P, S),

where

– V is an alphabet containing terminal and nonterminal alphabets, Σ and N = V \Σ,

– P is a finite set of productions, which are of the form

α −→ β , α ∈ V ∗NV ∗ and β ∈ V ∗,

– S is the initial symbol.

Define a relation ⇒G in V ∗ × V ∗ as follows:

u⇒G v iff ∃u′, u′′, α, β ∈ V ∗ : u = u′αu′′, v = u′βu′′ and α→ β ∈ P.

Let ⇒∗G be the transitive and reflexive closure of ⇒G, i.e.

u⇒∗G v iff u = v or ∃k ≥ 1 and u1, . . . , uk ∈ V ∗ : u = u1 ⇒G u2 ⇒G . . .⇒G uk = v
︸ ︷︷ ︸

= D

.

Now, the language generated by G is

L(G) = {w ∈ Σ |S ⇒∗G w}.

For brevity, we often write ⇒ instead of ⇒G . Further if u ⇒G v (resp. u ⇒∗G v) we
say that u derives directly (resp. derives) v according to G. A derivation of v from u is
the above sequence D.

1.2 Specifications of languages and language families 7

Example 1.1. Consider grammar ({a, b, S, S ′}, {a, b},P, S), where P = {S → S ′, S →
aSb, S ′ → S ′b, S ′ → 1}. Then we have

S ⇒ aSb⇒ aaSbb⇒ aaS ′bb⇒ aaS ′bbb⇒ aabbb ∈ L(G),

and
S ⇒ S ′ ⇒ S ′b⇒ S ′bb⇒ bb ∈ L(G).

It is not difficult to see that

L(G) = {anbm | m ≥ n ≥ 0}.

Example 1.2. Consider grammar G = ({a, #, t, t′, S}, {a},P, S), where P consists of

S −→ #ta#,

ta −→ aat,

t# −→ t′# | t′,

at′ −→ t′a,

#t′ −→ #t | 1.

With two exceptions next step of any derivation is unique. Based on this one can
conclude that L(G) = {a2n

| n ≥ 1}.

Our goal is to define different families of languages by grammars. This is achieved
by restricting the form of productions leading to so–called Chomsky hierarchy

L3 ⊂ L2 ⊂ L1 ⊂ L0 (1.7)

defined below. As we shall see each of these families can be defined as families accepted
by different types of automata, as well.

Family Form of productions Type of languages Corresponding automata

L0 no restriction
RE, recursively
enumerable

Turing machine

L1
αAγ → αβγ, S → 1
A ∈ N, α, β, γ ∈ V ∗, β 6= 1

CS, context–
sensitive

linearly bounded
automaton (lba)

L2 A→ β, A ∈ N, β ∈ V ∗ CF, context–free
pushdown automaton
(pda)

L3
A→ α | αB (right linear)
A,B ∈ N, α ∈ Σ∗

Rat or Reg
rational or regular

finite automaton (FA)

Table 1.1: Classification of grammars

Of course, languages in Li in table 1.1 on page 7 can be called type i languages.
We shall see that the hierarchy (1.7) is strict. Actually, there are many possibilities

to refine the Chomsky hierarchy. The diagram 1.2 on page 8 illustrates these possibilities
(becomes clearer later).

1.2 Specifications of languages and language families 8

LinDet

Rec

different
complexity
classes

���������

��	�

����
����������������

 �!�"$#�%

&�'�(�)�*,+�(�).-0/

Figure 1.1: Refined Chomsky hierarchy

Chapter 2

Regular languages

2.1 Finite automata

Family of regular languages is very basic in formal language theory. Mathematically
regular languages are natural extensions of finite languages, and from the computer sci-
ence point of view, they correspond languages which can be recognized by finite memory
devices.

Informally, finite automaton can be described as follows:
It consists of an input tape, a reading head and a finite number
of internal states. It reads the input symbol by symbol, and
in a step the automaton can change its internal state based
on the symbol and the current state. Initially the automaton
is in a specified initial state, and it accepts the input, if after
reading it the automaton is in some of specified final states.

I N P U · · ·

−→

read only head

q0 q1

qf

. . .

∧

Definition 2.1. Formally, deterministic finite automaton, DFA for short, is a quintuple

A = (Q, Σ, δ, q0, F),

where

(i) Q is a finite set of states

(ii) Σ is a finite input alphabet,

(iii) δ : Q× Σ→ Q is a partial transition function,

(iv) q0 ∈ Q is the initial state,

(v) F ⊆ Q is a set of final states.

The (partial) mapping δ : Q×Σ→ Q is extended to a (partial) mapping Q×Σ∗ → Q
(which is still denoted by δ) as follows:

δ(q, 1) = q

δ(q, wa) = δ
(
δ(q, w), a

)
∀w ∈ Σ∗, a ∈ Σ.

DFA A accepts or recognizes the language

L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.

9

2.1 Finite automata 10

Further a language L ⊆ Σ∗ is regular or recognizable iff it is accepted by a DFA. The
family of all regular languages over Σ is denoted by Reg(Σ) or Rec(Σ).

Now, the relation w = a1 · · · an ∈ L(A), with ai ∈ Σ, means that there exist states
q1, . . . , qn such that

δ(qi−1, ai) = qi for i = 1, . . . , n and qn ∈ F.

This can be illustrated as follows:

q0
a1−−−→ q1

a2−−−→ . . .
an−1
−−−→ qn−1

an−−−→ qn ∈ F (2.1)
or

(q0, a1 · · · an) ` (q1, a2 · · · an) ` · · · ` (qn−1, an) ` (qn, 1). (2.2)

More briefly, the above illustrations, which show how A accepts w or how A computes
on w, can be written:

q0
a1···an−−−−→ qn ∈ F

or
(q0, a1 · · · an) `∗ (qn, 1).

Note that `∗ here denotes the reflexive transitive closure of ` which corresponds to one
step derivation in A (cf. grammars on page 6).

As a conclusion, A accepts exactly those words which lead from the initial state to
a final state. Corresponding paths are called successful.

Example 2.1. Let A = ({0, 1, 2, 3}, {a, b}, δ, 0, {3}), where δ is given as:

Σ
Q a b

→ 0 1 0
δ: 1 1 2

2 3 0
← 3 3 3

c
c

c
A can be illustrated as:

1 20 3
a ab

b

a a , bb

As illustrated in this example, DFA can be given as a transition table or as a labelled
transition graph, where edge p

a
−→ q corresponds transition δ(p, a) = q, and initial and

final states are given by incoming and outgoing arrows, respectively.
It is not difficult to conclude that

L(A) = {a, b}∗aba{a, b}∗ =
{
w ∈ {a, b}∗ | w contains aba as a factor

}
.

This becomes even more illustrative if the states 0, 1, 2 and 3 are replaced by 1, a, ab
and aba — then the state remembers how much of aba is already found!

Remark 2.1. DFA A is complete iff δ is a total function. Then also its extension to
Q× Σ∗ would be total. A given A = (Q, Σ, δ, q0, F) can be completed as follows:
Let Ac = (Q ∪ {g}, Σ, δ′, q0, F), where

δ′(q, a) =

{

g if δ(q, a) is not defined,

δ(q, a) otherwise,
and δ′(g, a) = g ∀a ∈ Σ.

Obviously, Ac is complete, and equivalent with A, i.e. L(A) = L(Ac). Indeed, each
computation of A can be carried out in Ac, and if a computation in A stops, due to the
lack of the next transition, Ac moves to g, so–called garbage state, from where no final
state is reachable. Due to this remark, there is normally no need to pay attention to
the completeness of DFA.

2.1 Finite automata 11

In DFA each word, either accepted or not, has a unique (if at all) computation. This
is not true in nondeterministic automata.

Definition 2.2. A nondeterministic finite automaton, NFA for short, is like a DFA
except that δ and q0 are replaced by E and Q0:

(iii′) E ⊆ Q× Σ×Q is a transition relation,

(iv′) Q0 ⊆ Q is a set of initial states.

A language accepted by an NFA A is

L(A) = {w | ∃a1, . . . , an ∈ Σ, q0, . . . , qn ∈ Q : w = a1 · · · an,

q0 ∈ Q0, qn ∈ F and (qi−1, ai, qi) ∈ E for i = 1, . . . , n}.

Obviously, notations (2.1) and (2.2), as well as the transition table and the transition
graph representations suit for nondeterministic finite automata, too. For example, p

w
−→

q means that w causes in A a transition from p to q. In these terms

L(A) = {w | ∃p ∈ Q0, q ∈ F : p
w
−→ q in A}.

As a conclusion, a word is accepted by NFA A iff there exists at least one accepting
path from an initial state into a final one.

Example 2.1 (continued). The language of Example 2.1 is accepted by an NFA:

1 20 3
a ab

a , ba , b

Remark 2.2. The extension (iv’) is not essential. For an NFA A = (Q, Σ, E,Q0, F)
we define A′ = (Q ∪ {q0}, Σ, E ∪ E ′, {q0}, F), where q0 is a new state and E ′ =
{(q0, a, q) | ∃p ∈ Q0 : (p, a, q) ∈ E}. Obviously, A′ contains only one initial state,
and L(A) = L(A′).

Theorem 2.1. A language L is regular iff it is accepted by an NFA.

Proof. It has to be shown that each language L accepted by an NFA, say A = (Q, Σ, E,
Q0, F), is accepted by a DFA as well.

We construct a DFA B = (P, Σ, δ, q0, G) as follows:

P = 2Q = the power set of Q,

δ(H, a) = {q ∈ Q | ∃p ∈ H : (p, a, q) ∈ E} for H ∈ P, a ∈ Σ,

q0 = Q0,

G = {H ∈ P | H ∩ F 6= ∅}.

Clearly, B is deterministic (and complete) and we show:

Claim. δ(H,w) = {q ∈ Q | ∃p ∈ H : p
w
−→ q in A} for all w ∈ Σ∗, H ∈ P .

This is shown by induction on |w|.
|w| = 0: Now

δ(H, 1)
def. of δ

↓
= H

by convention!

↓
= {q ∈ Q | ∃p ∈ H : p

1
−→ q in A}.

2.1 Finite automata 12

Induction step:

δ(H, ua) = δ
(
δ(H, u), a

) i.h.
= δ

(

= Q′

{
︷ ︸︸ ︷

q ∈ Q | ∃p ∈ H : p
u
−→ q in A}, a

)

= {r ∈ Q | ∃q ∈ Q′ : q
a
−→ r in A}

= {r ∈ Q | ∃q ∈ Q′, p ∈ H : p
u
−→ q and q

a
−→ r in A}

= {r ∈ Q | ∃p ∈ H : p
ua
−→ r in A}.

Now the theorem follows easily:

L(B) = {w ∈ Σ∗ | δ(Q0, w) ∈ G} = {w ∈ Σ∗ | δ(Q0, w) ∩ F 6= ∅}

= {w ∈ Σ∗ | ∃p ∈ Q0, q ∈ F : p
w
−→ q in A} = L(A).

Remark 2.3. The construction of the proof of Theorem 2.1 is called subset construction.
Clearly, it increases the number of states exponentially. It can be shown that this
exponential blow up cannot be avoided in general, cf. Figure 2.1 on the next page.

Remark 2.4. For certain purposes NFA´s are much more suitable than DFA´s. For
example the fact that the reverse of a regular language L, that is LR = {wR | w ∈ L},
is also regular. Indeed, in NFA accepting L it is enough to chance the directions of the
arrows and initial and final state sets in order to obtain an NFA for LR.

Example 2.1 (continued). A subset construction for an automaton of page 11 yields:

023

03

01 020 013
a ab

b

a ab

a

b

b

b

a

This should be compared to the DFA of page 10. Note that if the construction is
done step–by–step the transitions need to be defined only for those states which are
reachable from the initial state.

We can always assume that an FA contains cycles from a state into itself labeled by
the empty word (cf. proof of Theorem 2.1). Indeed, such cycles have no affect to the

language generated. On the other hand transitions p
1
−→ q cannot be added without

affecting the language generated. In a generalized automaton also such transitions are
allowed.

Definition 2.3. A generalized finite automaton A = (Q, Σ, E, I, F), GFA for short, is
like an NFA except that transition relation is now of the form:

(iii′′) E ⊆ Q× Σ∗ ×Q is a finite transition relation.

2.1 Finite automata 13

1 20
a ab

a b b

n-1
a

b

. . .

a

n=4 : Subset construction

1 20
aa

a , b

b b

3

a

b

a

12 2301
aa

a b b

03 13 02

b

a

�

b

b

b

123 023012
aa

a b b

013

b

a

0123

b

b

a

b

a

a

�����

Figure 2.1: The smallest DFA for L(A4) is of the size 2|Q4|.

Remark 2.5. As for NFA for GFA one can always find an equivalent automaton of the
same type having only one initial state.

Example 2.1 (continued). Clearly the language of this example is accepted by 2-state
GFA:

10

aba

a , ba , b

Next we show that even this generalization of an FA does not increase the accepting
power.

Theorem 2.2. A language L is regular iff it is accepted by a GFA.

2.1 Finite automata 14

Proof. We have to show, by Theorem 2.1, that the language accepted by a GFA is
accepted by an NFA as well. By the above remark we can assume that the GFA contains
only one initial state. So let L = L(A) for such a GFA A.
A may contain two types of “illegal” transitions:

p
w
−−−→ q , with w = a1 · · · an, n ≥ 2, ai ∈ Σ,

or

p
1

−−−→ q , with p 6= q. (∗)

Clearly, a transition of the former type can be eliminated by replacing it with the
transitions

p
a1−−−→ p1 , p1

a2−−−→ p2 , . . . , pn−1
an−−−→ q,

where p1, . . . , pn−1 are new states not in A. Obviously, the language accepted is not
changed, so that after a finite number of applications of this procedure we obtain a GFA
accepting the same language and having no productions of this form. Consequently, we
may assume that E ⊆ Q× (Σ ∪ {1})×Q.

In order to eliminate productions of the form (∗) we need an auxiliary notion: For a
state p, its 1-closure, clos(p) for short, is defined as follows:

clos(p) = {q | p
1
−→ q in A}.

1-closure of p can be computed by the following procedure. Set

C0(p) = {p},

Ci+1(p) = Ci(p) ∪ {q | ∃r ∈ Ci(p) : (r, 1, q) ∈ E}.

Then clearly,

clos(p) =
⋃

i≥0

Ci(p)

and

Ci(p) ⊆ Ci+1(p) , ∀i ≥ 0.

Therefore clos(p) =
⋃i0

i=0 Ci(p), where i0 is the smallest index s.t. Ci0−1(p) = Ci0(p).
Now, let a GFA A be (Q, Σ, E, {q0}, F), with E ⊆ Q× (Σ∪{1})×Q. We construct

an NFA A′ = (Q, Σ, E ′, Q0, F) as follows:

Q0 = clos(q0),

(p, a, q) ∈ E ′, a ∈ Σ ⇔ ∃r ∈ Q : (p, a, r) ∈ E, a ∈ Σ and q ∈ clos(r).

We claim that
L(A′) = L(A).

Inclusion L(A′) ⊆ L(A) is clear: Each successful path in A′

– starts from a state in Q0, and

– leads through transitions in E ′ to a state in F.

The same word is accepted by A since

2.2 Properties of regular languages 15

– by the definition of Q0, A can go from q0 to any state of Q0 by reading the empty
word,

– each transition of E ′ can be simulated in A by a sequence of transitions.

Conversely, the inclusion L(A) ⊆ L(A′) follows since each computation of A can be
factorized uniquely to the form

q0
1

−−−→ q1
a1−−−→ q′1

1
−−−→ q2

a2−−−→ · · ·
1

−−−→ qn
an−−−→ q′n

1
−−−→ q, with ai ∈ Σ.

∧ q q q

The dot line shows how this computation can be simulated in A′.

Remark 2.6. The proof of Theorem 2.2 is algorithmic, that is it provides an algorithm
to construct for each GFA an equivalent NFA. The same applies to the proof of Theorem
2.1.

2.2 Properties of regular languages

In this section we establish several basic properties of regular languages, which are useful
to show that certain languages are regular, or also to show that they are not. We start
with closure properties.

Theorem 2.3. The family of regular languages is closed under Boolean operations.

Proof. Let L1, L2 ⊆ Σ∗ be accepted by DFA´s A1 and A2, respectively, say Ai =
(Qi, Σ, δi, q0(Ai), Fi), with i = 1, 2.

Union: L1 ∪ L2 is accepted by a GFA A∪ described as:

A∪ : → q0

q0(A1) −→ · · ·

q0(A2) −→ · · ·

graphs of A1 and A2,

�
�

�
��

�
�
�

���

HHH

@@

��

q

y

p

x

1

1

where q0 is the initial state of A∪, and F1 ∪ F2 is its set of final states. Here we have to
assume, as we can, that Q1 ∩Q2 = ∅. Now, by Theorem 2.2, L1 ∪ L2 ∈ Reg.

Complement : If A1 is complete, as we can assume, then Σ∗ \ L1 is accepted by the
automaton AC

1 which is obtained from A1 by changing its final states to nonfinal, and
conversely. Indeed, in a complete DFA each word has the unique computation which is
successful in A1 iff it is not successful in AC

1 .

Intersection: By de Morgan Law L1 ∩ L2 =
(
LC

1 ∪ LC
2

)C
or directly:

Define A∩ = (Q, Σ, δ, q0, F) as follows:

Q = Q1 ×Q2,

δ
(
(q1, q2), a

)
=

(
δ1(q1, a), δ2(q2, a)

)
,

q0 =
(
q0(A1), q0(A2)

)
,

F = {(q1, q2) | q1 ∈ F1, q2 ∈ F2}.

By construction a word w causes a successful computation in A∩ iff it causes successful
computations in A1 and A2.

2.2 Properties of regular languages 16

Theorem 2.4. The family of regular languages is closed under rational operations.

Proof. We use the notations of Theorem 2.3.

Union: Theorem 2.3.

Catenation: L1L2 is accepted by a GFA A
�
illustrated as follows:

A
�
: → q0(A1)

x
−→ · · · f ∈ F1

1
−→ q0(A2)

y
−→ · · · f ∈ F2 →

graphs of A1 and A2,

'
&

$
%

'
&

$
%

@@

��
@@ ��

@@

��

a

b

y

x
p q

c

d

y

x

Kleene star : If we add to A1 transitions {(p, 1, q0) | p ∈ F} we obtain an automaton
accepting Kleene plus of L1, i.e. L+

1 . So the result follows from the identity L∗1 =
L+

1 ∪ {1}.

Theorem 2.5. The family of regular languages is closed under morphisms and inverse
morphisms.

Proof. Let h : Σ∗ → ∆∗ be a morphism.

Morphism: If a regular language L ⊆ Σ∗ is accepted by a DFA A, then a GFA Ah

accepting h(L) ⊆ ∆∗ is obtained from it by changing the input alphabet to ∆ and
transitions as follows:

p
h(a)
−−−→ q in Ah iff p

a
−−−→ q in A.

Inverse morphism: Let L ⊆ ∆∗ be accepted by a FA A. We modify A to a new
automaton Ah−1 as follows:

p
a

−−−→ q in Ah−1 iff p
h(a)
−−−→ q is a path in A.

Then obviously L(Ah−1) = h−1(L).

Remark 2.7. Note that the number of states of a DFA in the above construction for
inverse morphisms does not grow while for morphisms it may grow.

Next we provide a tool to show that some languages are not regular.

Theorem 2.6 (Pumping Lemma). Let L be accepted by an n-state FA A. Then for
each w ∈ L, with |w| ≥ n, there exist words u, v and z such that

w = uvz , with |uv| ≤ n, v 6= 1
and moreover,

uv∗z ⊆ L.

Proof. Let w = a1 · · · a|w| with ai ∈ Σ. Since A has only n states it follows from the
pigeon hole principle that the sequence

q0, q1 = δ(q0, a), . . . , qn = δ(q0, a1 · · · an)

contains a repetition, i.e. there exist indices i and j, 0 ≤ i < j ≤ n, such that qi = qj.
Choose u = a1 · · · ai, v = ai+1 · · · aj and z = aj+1 · · · a|w|. Then the first claim follows.

Assuming that w ∈ L, we conclude from the fact δ(qi, v) = qj = qi, that uv∗z ⊆ L,
as required.

2.2 Properties of regular languages 17

Remark 2.8. Sometimes the above Pumping Lemma is given in the following weaker
forms:

(i) Each word w of length at least n accepted by an n-state FA A admits a factoriza-
tion w = uvz, with v 6= 1, such that uv∗z ⊆ L(A).

(ii) For each infinite regular language L, there exist words u, v and z, with v 6= 1,
such that uv∗z ⊆ L.

Example 2.2. We claim that the languages

L1 = {anbn | n ≥ 1}
and

L2 =
{
w ∈ {a, b}∗ | |w|a = |w|b

}

are not regular. If L1 would be regular, then by Theorem 2.6, we would find m > 0 and
k such that

ak+mtbk ∈ L1 , for all t ≥ 0,

which is not the case.
To prove that L2 6∈ Reg, we assume the contrary. Then, by Theorem 2.3,

L2 ∩ a∗b∗ ∈ Reg .

However, L2 ∩ a∗b∗ = L1.

Theorem 2.6 has also theoretical applications.

Corollary 2.7. Let A be an n-state automaton. Then

(i) L(A) 6= ∅ iff ∃w ∈ L(A) : |w| < n.

(ii) L(A) is infinite iff ∃w ∈ L(A) : n ≤ |w| < 2n.

Proof. (i) ⇐: Clear.
⇒: Let w be (some) shortest word in L(A). If |w| < n we are done; otherwise by the
above Remark 2.8 (i) we can write w = uvz, v 6= 1 and uz ∈ L(A), a contradiction to
the minimality of w.

(ii) ⇐: Clear, by Theorem 2.6.
⇒: Now L(A) is infinite, therefore it contains a word of the length at least n. Let w
be (some) shortest word of this type. If |w| < 2n we are done. Otherwise, by Theorem
2.6 we can factorize w = uvz with |uv| ≤ n and v 6= 1, and moreover uz ∈ L(A). But
|w| > |uz| ≥ n, a contradiction.

Fundamental problems in formal language theory are different kinds of decision prob-
lems. In these problems it is asked whether a language of certain type (or more precisely
a device determining the language) has a certain property. As a solution to a decision
problem one has to construct an algorithm to solve the problem, or to prove that such
an algorithm does not exist.

Standard decision problems are for example:

Membership problem , “w ∈ L(A) ?” That is, given a word w and automaton A, decide
whether w is in L(A).

2.2 Properties of regular languages 18

Emptiness problem , “L(A) = ∅ ?” That is, given an automaton A, decide whether
L(A) contains no words (or equivalently a word).

Equivalence problem , “L(A) = L(B) ?” That is, given two automata, decide whether
they accept the same language.

Remark 2.9. Of course, there is no reason to consider the above problems only for
finite automata — A can be any device defining languages.

Remark 2.10. The above formulation of decision problems emphasizes, the fact whether
problems are in principal algorithmically decidable. Of course, in the case of decidable
problems one can also ask, how complicated the problem is computationally. This aspect
is only briefly considered in this course.

Theorem 2.8. Membership, emptiness and equivalence problems are decidable for reg-
ular languages (given by FA´s accepting those).

Proof. Membership problem: Here we are given a FA A and a word w ∈ Σ∗. An
algorithm to test “w ∈ L(A) ?” is obvious: Carry out the computations caused by
w in A, if some of them is accepting, output “yes”, otherwise “no”. In the case A is
deterministic there exists only one such computation to be checked.

Emptiness problem: An algorithm: Decide the membership problem for all w satisfying
|w| < the number of states of A, and if one of these is accepted then output “yes”,
otherwise “no”. By Corollary 2.7 the algorithm is correct.

A more efficient algorithm is obtained as follows: Set

R0 = {q0}
and

Ri+1 = Ri ∪ {q | ∃a ∈ Σ, p ∈ Ri : p
a
−→ q in A}.

Compute Ri´s as long as they are properly increasing, and then test whether the set
Ri0 such obtained contains a final state.

Clearly, the algorithm

– terminates, since the sequence of Ri´s is increasing and the total number of states
is finite;

– works correctly, since Ri´s compute the states which are reachable by words of
length at most i.

Equivalence problem: Here two FA´s A and B are given. The algorithm is based on the
equivalence:

L(A) = L(B) iff

= L
︷ ︸︸ ︷(
L(A) \ L(B)

)
∪
(
L(B) \ L(A)

)
= ∅.

Clearly, this equivalence is correct. On the right hand side we have the emptiness
problem for a certain regular language. It can be solved by our second problem, if we
can algorithmically construct an FA for L. This, in turn, can be done by Theorem
2.3.

2.3 Characterizations 19

Remark 2.11. Let us consider briefly the computational complexity of the above al-
gorithms, i.e. how many steps are needed measured as the function on the size of an
input. The size of a word is clear: its length. Let us measure the size of an automaton
by the number of its states (more precise would be the number of transitions).

Assume further that the automaton is given as a DFA (if it would be an NFA then the
size could be drastically smaller, cf. Remark 2.3 on page 12). Now the above problems
can be solved as follows:
Membership: In time O(|w|), if the size of A is not counted and each computation step
in A can be done in a constant time.

Emptiness: In time O(n|Σ|n), where n is the size of A, by the first algorithm; and in
time O(n2), by the second, assuming that the size of the alphabet of A is a constant.

Equivalence: In a polynomial time of some rather small degree. This follows from the
second algorithm for the emptiness problem, and the fact that a deterministic automaton
for L is of polynomial size in number of states of A and B.

Finally, let us look what happens if we assume that the language is given by an NFA.
For the membership problem the above trivial algorithm becomes exponential; for the
emptiness the second algorithm remains polynomial of degree at most 3. The equivalence
problem, in turn, becomes much more complicated (since the complementation may
increase the number of states drastically). Indeed, for this problem no polynomial
time algorithm is known, more precisely it is known to be so–called PSPACE–complete
problem.

2.3 Characterizations

In this section we give several different characterizations for the family of regular lan-
guages. The first one is one of the oldest and most important results in automata
theory.

Theorem 2.9 (Kleene, 1956). A language L ⊆ Σ∗ is regular iff it is rational.

Proof. ⇐: We have to show that (i) the initial languages in the definition of rational
languages, cf. page 5, are regular, and that (ii) the family of regular languages is closed
under rational operations.

Condition (i) is clear: ∅ and {a} are regular. Condition (ii), was proved in Theorem
2.4.
⇒: Let L = L(A) for a DFA A = (Q, Σ, δ, q0, F), where Q = {q0, q1, . . . , qn−1}. We

have to construct a rational expression for L. For 0 ≤ m ≤ n and qi, qj ∈ Q let

Lm
ij =

{
w ∈ Σ∗ | qi

w
−→ qj in A and ∀u < w, u 6= 1 : δ(qi, u) ∈ {q0, . . . , qm−1}

}
.

In other words, Lm
ij consists of exactly those words which leads in A from qi to qj using

only intermediate states from the set {q0, . . . , qm−1}. We shall show that these sets are
rational, which implies the theorem, since

L =
⋃

qj∈F

Ln
0j.

2.3 Characterizations 20

To prove that Lm
ij ´s are rational we proceed by induction on m.

Case m = 0:
L0

ij =

{

{a ∈ Σ | δ(qi, a) = qj} , if i 6= j,

{a ∈ Σ | δ(qi, a) = qj} ∪ {1} , if i = j

proving that L0
ij is rational.

Induction step: We assume that languages Lm
ij for 0 ≤ m < n and 0 ≤ i, j ≤ n − 1 are

rational. And we claim that

Lm+1
ij = Lm

ij ∪ Lm
im(Lm

mm)∗Lm
mj. (2.3)

In order to prove this we conclude from the definition of Lm
ij´s that

w ∈ Lm+1
ij iff

– w leads from qi to qj without visiting states qk for k > m, iff

– w leads from qi to qj without visiting states qk for k > m− 1 or

– w leads from qi to qj visiting the state qm, possibly several times, but without
visiting the states qk for k > m.

In the first case w belongs to the first member of the union of the right hand side of
(2.3), and in the second case to the second member.

Formula (2.3) proves the claim by induction hypothesis.

Remark 2.12. Again the proof of Theorem 2.9 is constructive. That is, given a reg-
ular expression one can construct an FA (and hence also a DFA) recognizing it, and
conversely given a DFA one can construct a rational expression defining this language.
The constructions are based on Theorem 2.4 and the proof of Theorem 2.9, respectively.
The former problem is called the synthesis problem for finite automata and the latter
the analysis problem for finite automata.

Our above solutions for analysis and synthesis problems are not computationally
efficient. A more practical algorithm for the analysis problem can be based on the
following:

Lemma 2.10. Let K ⊆ Σ+ and L ⊆ Σ∗ be regular languages. Then the equation
X = XK ∪ L has a unique solution X = LK∗ which is regular.

Proof. Clearly LK∗ is a solution:

(LK∗)K ∪ L = L(K∗K) ∪ L = LK+ ∪ L = L(K+ ∪ {1}) = LK∗.

In order to prove the uniqueness let L1 and L2 be two different solutions, and w a
minimal (with respect to length) word in the symmetric difference of L1 and L2, say in
L1 \ L2. Now we can conclude:

w 6∈ L2
L2=L2K∪L

=⇒ w 6∈ L
L1=L1K∪L

=⇒ w ∈ L1K,

so we can write w = uv, with u ∈ L1 and v ∈ K. Moreover, since K ⊆ Σ+, |v| > 0, so
that |u| < |w|. But since u ∈ L1, by the minimality of w, u must be in L2, too. Hence
we get a contradiction

w = uv ∈ L2K ⊆ L2.

2.3 Characterizations 21

Now, we apply Lemma 2.10 to the analysis problem.
Let A = (Q, Σ, δ, q0, F) be a DFA (or an NFA). Denote q0 = 1,Q = {1, . . . , n} and

Li = L(Ai), for Ai = (Q, Σ, δ, 1, {i}), i = 1, . . . , n,
Kij = {a ∈ Σ | δ(j, a) = i}, for 1 ≤ i, j ≤ n.

These languages are connected by the identities:






L1 = L1K11 ∪ L2K12 ∪ · · · ∪ LnK1n ∪ {1}

L2 = L1K21 ∪ L2K22 ∪ · · · ∪ LnK2n

...

Ln = L1Kn1 ∪ L2Kn2 ∪ · · · ∪ LnKnn.

(2.4)

Here the languages Li are unknown languages, while Kij´s can be immediately deter-
mined from A. Also we have

L =
⋃

i∈F

Li.

Now, we apply Lemma 2.10 to solve (2.4). First since K11 ⊆ Σ+ we can solve L1, in
terms of L2, . . . , Ln, from the first equation and then substitute it to other equations.
Thus a system with fewer unknowns is obtained, and the equations still satisfy the
condition for the coefficients K. Consequently, the procedure can be continued, and
finally the values for unknowns are found. Above applies for NFA´s as well.

Example 2.3. Consider the DFA A:
We obtain (replacing ∪ by +):







L1 = L1b + L2∅+ L3b + 1

L2 = L1a + L2a + L3∅

L3 = L1∅+ L2b + L3∅

21
a b

b

ab

3

⇔







L1 = L1b + L3b + 1

L2 = L1a + L2a

L3 = L2b

L3=L2b
⇔

{

L1 = L1b + L2bb + 1

L2 = L1a + L2a

L2=L1aa∗

⇔ L1 = L1b + L1aa∗bb + 1 ⇔ L1 = 1(b + a+bb)∗

∴







L1 = (b + a+bb)∗

L2 = (b + a+bb)∗a+

L3 = (b + a+bb)∗a+b

⇒ L(A) = (b + a+bb)∗
(
1 + a+(1 + b)

)

In the second characterization of regular languages we use grammars. We recall that
a context–free grammar G = (V, Σ, S,P) is right linear or type 3 iff the productions are
of the form:

A −→ α or A −→ αB with A,B ∈ V \ Σ, α ∈ Σ∗.

We call languages generated by such grammars right linear as well. Further we say that
a right linear grammar is in a normal form if the productions are of the form:

A −→ aB, A −→ a or A −→ 1 with A,B ∈ V \ Σ, a ∈ Σ.

2.3 Characterizations 22

Theorem 2.11. L ⊆ Σ∗ is regular iff it is generated by a right linear grammar.

Proof. ⇒: Assume that L = L(A) for a DFA A = (Σ, Q, δ, q0, F). Define a right linear
grammar G = (V, Σ, q0,P) by setting

V = Σ ∪Q , where Σ ∩Q is (assumed to be) empty,

P = {p→ aq | δ(p, a) = q} ∪ {p→ a | δ(p, a) ∈ F} ∪ P0, where

P0 =

{

{q0 → 1} , if q0 ∈ F,

∅ , otherwise.

We claim that L(A) = L(G).
To prove this we first note that

1 ∈ L(G) ⇔ q0 −→ 1 ∈ P ⇔ q0 ∈ F ⇔ 1 ∈ L(A).

Moreover, for w 6= 1 we have, by the construction,

p
w
−−−→ q in A ⇔ p⇒∗G wq

and

p
w
−−−→ q ∈ F in A ⇔ p⇒∗G w.

(If you want a precise formal proof for these equivalences, note that directions “⇒” are
clear — paths in A gives directly the derivations. For the reverse implication you can
apply induction together with the fact, what you can say about the last steps of the
derivation).

Since S = q0 the claim follows.
⇐: Now assume that L = L(G) for a right linear grammar G = (V, Σ, S,P). We

define a GFA A = (Q, Σ, E, {S}, F) as follows:

Q = (V \ Σ) ∪ {f} , where f is a new symbol,

F = {f} , and

E = {(p, α, q) | p→ αq ∈ P, q ∈ V \ Σ} ∪ {(p, α, f) | p→ α ∈ P, α ∈ Σ∗}

As above we claim that L(G) = L(A).
To see this we first note that, if w ∈ L(A), then S

w
−→ f in A, so that w possesses

a factorization w = u1 · · · un, with ui ∈ Σ∗, and moreover there exist states q1, . . . , qn−1

such that

(S, u1, q1), (q1, u2, q2), . . . , (qn−2, un−1, qn−1), (qn−1, un, f) ∈ E

and, by the construction, none of the qi´s equal f . Consequently, S ⇒∗G w.
Conversely, if S ⇒∗G w ∈ Σ∗, then in the last step of the derivation a production of

the form p→ α, with α ∈ Σ∗, must be applied, and in all other steps (if any) productions
of the form p→ αq, with q ∈ V \Σ, must be applied. So it follows from the construction
of A that S

w
−→ f in A, that is w ∈ L(A).

Corollary 2.12. Each right linear language is generated by a right linear grammar in
normal form.

2.3 Characterizations 23

Proof. Let L be generated by a right linear grammar. Then, by Theorem 2.11, it is
regular, and thus accepted by a DFA. But, by the first part of the proof of Theorem
2.11, a language accepted by a DFA, is generated by a right linear grammar in normal
form.

Remark 2.13. The construction indicated above to replace a right linear grammar with
an equivalent normal form grammar is rather complicated:

RLG −→ GFA −→ DFA −→ NRLG.

We conclude our characterization results with some other algebraic characterizations.
We need some terminology.

Definition 2.4. We recall that equivalence relation ρ on Σ∗ is a relation, which is
reflexive, symmetric and transitive, that is satisfies for all u, v, w ∈ Σ∗:

u ρ u,

u ρ v ⇒ v ρ u,

u ρ v, v ρ w ⇒ u ρ w.

Further an equivalence relation ρ is right congruence (resp. congruence) if it satisfies
for all w (resp. w1 and w2)

u ρ v ⇒ uw ρ vw

(resp. u ρ v ⇒ w1uw2 ρ w1vw2).

Definition 2.5. Let L ⊆ Σ∗ be a language. We associate to L two equivalence relations
∼L and ≈L as follows:

u ∼L v iff u−1L = v−1L (2.5)

and so called syntactic congruence of L:

u ≈L v iff ∀x, y ∈ Σ∗ : [xuy ∈ L ⇔ xvy ∈ L]. (2.6)

Since these relations are defined either by the equality or by the equivalence they
are clearly equivalence relations. Moreover, ∼L is a right congruence:

u ∼L v ⇒ u−1L = v−1L ⇒ w−1(u−1L) = w−1(v−1L)
⇒ (uw)−1L = (vw)−1L ⇒ uw ∼L vw.

The relation ≈L, in turn, is a congruence (cf. Exercises).
Finally, we say that an equivalence relation is finite if the number of its equivalence

classes is finite.
The above notions were associated with a language (which was not necessarily reg-

ular). Now, we associate a right congruence on Σ∗ to a regular language L via a DFA
A = (Q, Σ, δ, q0, F) accepting L.

Definition 2.6. We define a relation ∼A on Σ∗ by the condition:

u ∼A v iff δ(q0, u) = δ(q0, v). (2.7)

2.3 Characterizations 24

Again it is defined by the equality so that ∼A is an equivalence relation, and since
A is deterministic it is also a right congruence: If u and v leads in A to a same state,
so do uw and vw, for any w.

Relations (2.5) and (2.7) are related as follows:

Lemma 2.13. Let L = L(A) for a DFA A. Then for all u, v ∈ Σ∗:

u ∼A v ⇒ u ∼L v.

Proof. Assume that u ∼A v, that is with our standard notations δ(q0, u) = δ(q0, v) = q.
We have to show that

u−1L = v−1L. (2.8)

But, by the definition of the quotient,

u−1L = {w | uw ∈ L}

which, by the identity L = L(A), is equal to the language

{w | δ(q0, uw) ∈ F} = {w | δ(q, w) ∈ F}.

So (2.8) follows from the assumption.

Lemma 2.13 says that the relation ∼A is a refinement
of ∼L, that is each equivalence class of ∼L is a union of
those of ∼A.

Σ∗

←− ∼A class

←− ∼L classWe prove

Theorem 2.14. L ⊆ Σ∗ is regular iff ∼L is finite.

Proof. ⇒: Assume that L = L(A) for a DFA A. Since the number of states of A is
finite, so is the right congruence ∼A, cf. (2.7). But then, by Lemma 2.13, ∼L is finite
as well.
⇐: Assume that ∼L is finite, i.e. the set

Q = {u−1L | u ∈ Σ∗}

is finite. We define a DFA AL = (QL, Σ, δL, iL, FL) as follows:

QL = Q = {u−1L | u ∈ Σ∗},

iL = L = 1−1L,

FL = {u−1L | u ∈ L} and

δL(u−1L, a) = a−1(u−1L) = (ua)−1L.

Since Q is finite, this is a well defined DFA. Moreover,

w ∈ L(AL) ⇔ δL(L,w) ∈ FL ⇔ w−1L ∈ {u−1L | u ∈ L}
⇔ ∃u ∈ L : w−1L = u−1L ⇔ w ∈ L,

where the last equivalence is based on the fact u ∈ L ⇔ 1 ∈ u−1L.
Consequently, we have found a DFA accepting L.

2.3 Characterizations 25

Remark 2.14. The automaton AL for the language L constructed above is called the
minimal automaton for L. We justify this terminology later.

In the above proof we noted that

u ∈ L and w−1L = u−1L ⇒ w ∈ L,

that is, L is some union of equivalence classes of ∼L — and this is independent of
whether L is regular or not. For regular L we can say more:

Theorem 2.15 (Myhill–Nerode). A language L ⊆ Σ∗ is regular iff it is some union
of equivalence classes of a finite right congruence on Σ∗.

Proof. ⇒: In the proof of Theorem 2.14: If L is regular, then ∼L is a finite right
congruence and L is a union of some equivalence classes of ∼L.
⇐: Assume that L =

⋃

u∈F{w | w ρ u}, where ρ is a finite right congruence and F
is a finite language. We claim, in accordance with Lemma 2.13, that for all u, v ∈ Σ∗

u ρ v ⇒ u ∼L v. (2.9)

So assume that u ρ v, that is, since ρ is a right congruence,

∀w : uw ρ vw. (2.10)

Now, let x ∈ u−1L. Then ux ∈ L and so by (2.10) and the fact that L is a union of
ρ -classes, also vx ∈ L, which means that x ∈ v−1L. Consequently, by symmetry, u ∼L v
and we have proved (2.9).

Finally, since ρ is finite, so is ∼L, by (2.9), so that the regularity of L follows from
Theorem 2.14.

In Theorems 2.14 and 2.15 we characterized regular languages in terms of right
congruences like ∼L. Similarly, this family can be characterized by using the syntactic
congruence ≈L, which was defined by the formula (2.6). Intuitively, the formula means
that u and v occur in words of L in exactly the same context.

Theorem 2.16. A language L ⊆ Σ∗ is regular iff its syntactic congruence ≈L is finite.

Proof. ⇐: Assume that ≈L is finite. Then ∼L is finite, too, since as a congruence ≈L

is also a right congruence, so that we can apply (2.9). Hence, by Theorem 2.15, L is
regular.
⇒: Assume that L is regular, say it is accepted by a DFA A = (Q, Σ, δ, q0, F). We

associate each w ∈ Σ∗ with a partial mapping tw : Q→ Q by the condition:

tw(q) = δ(q, w).

Now, the relation defined by

u ρ v iff tu = tv

is a congruence: Since it is defined by the equality, it is an equivalence relation, and
since A is deterministic it is a congruence. For example: for x ∈ Σ∗ if tu = tv, then

2.3 Characterizations 26

txu(q) = δ(q, xu) = δ
(
δ(q, x), u

)
= tu

(
δ(q, x)

)
= tv

(
δ(q, x)

)
= txv(q), so that txu = txv.

Moreover,since the number of mappings tw is finite, the index of ρ is finite, as well.
It follows that it is enough to prove that for all u, v ∈ Σ∗

u ρ v ⇒ u ≈L v.

So assume that u ρ v, in other words, that tu = tv. Now for any x, y ∈ Σ∗ we have

xuy ∈ L ⇔ δ(q0, xuy) ∈ F ⇔ δ
(

= tu(δ(q0,x))
︷ ︸︸ ︷

δ
(
δ(q0, x), u

)
, y
)

∈ F

⇔ δ
(

δ
(
δ(q0, x), v

)
, y
)

∈ F ⇔ xvy ∈ L.

Our final characterization result is in terms of monoids. We need some terminology.

Definition 2.7. We say that a monoid M recognizes L ⊆ Σ∗ if there exist a morphism
ϕ : Σ∗ → M and a subset B ⊆ M such that L = ϕ−1(B). Languages recognized by
finite monoids are often called recognizable.

Theorem 2.17. A language L ⊆ Σ∗ is regular iff it is recognized by a finite monoid.

Proof. ⇒: Assume that L is regular. Then, by Theorem 2.16, the syntactic congruence
≈L is finite, and so is the quotient monoid M = Σ∗/≈L. Let ϕ : Σ∗ → M be the
canonical morphism: ϕ(x) = [x]. We claim that, in addition to these, we can take
B = ϕ(L). It remains to be shown that L = ϕ−1(B). But this is clear since L is a union
of ≈L-classes: u ∈ L, u ≈L v ⇒ [u ∈ L, 1 · u · 1 ∈ L ⇔ 1 · v · 1 ∈ L].
⇐: Let ϕ : Σ∗ → M , where M is a finite monoid, be a morphism and B ⊆ M such

that L = ϕ−1(B).
We define a DFA A = (M, Σ, δ, 1, B), where

δ(m, a) = m · ϕ(a).

Clearly, A is well defined. Further, for any w = a1 · · · an, ai ∈ Σ,

δ(1, w) = 1 · ϕ(a1) · · ·ϕ(an) = ϕ(w),

so that indeed L = ϕ−1(B) = L(A).

The monoid M = Σ∗/≈L in the proof of Theorem 2.17 is called the syntactic monoid
of the language L.

Remark 2.15. We have shown that the family of regular languages has many different
characterizations. This is a clear evidence of the importance of the family. Further
these characterizations are based on rather different notions. Two are based on the
notion of accepting or generating words sequentially (FA and LRG), one is based on
closure properties (rationality) and three more are based on finiteness of certain algebraic
structures (right congruences, syntactic congruences and syntactic monoids). There exist
still several other characterizations some of which are purely combinatorial.

2.4 Minimization 27

2.4 Minimization

In this section we show that there exists the unique minimal (with respect to the number
of states) complete DFA accepting a given regular language. This automaton is the
automaton of the proof of Theorem 2.14, although in practice it is normally constructed
by a different procedure.

Definition 2.8. Recall that the minimal automaton accepting a regular language L ⊆ Σ∗

was AL = (QL, Σ, δL, iL, FL), where

QL = {u−1L | u ∈ Σ∗},

iL = L = 1−1L,

FL = {u−1L | u ∈ L} and

δL(u−1L, a) = a−1(u−1L) = (ua)−1L.

Clearly, AL is deterministic, complete and as we saw L(AL) = L. Moreover, AL is
connected, that is each state is reachable from the initial one by some word u.

Now, let A be a complete, connected DFA accepting L. Let A = (Q, Σ, δ, q0, F), with
Q = {q0, . . . , qn−1}. Further let Li = L(Ai), where Ai is obtained from A by taking qi

to its initial state. We define a mapping ν : Q→ QL by setting:

ν(q) = u−1L , where q = δ(q0, u).

We claim that

(i) ν is well defined, that is a mapping,

(ii) ν is surjective, and

(iii) if ν(q) = u−1L and δ(q, a) = q′, then ν(q′) = (ua)−1L, in other words the following
diagram commutes:

q
a

−−−→ q′ in A

ν



y ν



y

u−1L
a

−−−→ (ua)−1L in AL

,

and moreover,
ν(q0) = iL

and
q ∈ F iff ν(q) ∈ FL.

Proof of (i): Let δ(q0, u) = q = δ(q0, v) for u, v ∈ Σ∗. We have to show that
u−1L = v−1L. But this is just Lemma 2.13.

Proof of (ii): Clear, by the completeness of A.
Proof of (iii): Let δ(q0, u) = q and δ(q, a) = q′. Then

δL

(
ν(q), a

)
= δL(u−1L, a) = (ua)−1L = ν(q′) = ν

(
δ(q, a)

)

proving the diagram. Secondly,

ν(q0) = 1−1L = the initial state of AL = iL,

2.4 Minimization 28

and finally,

q ∈ F
A is
⇔

connected
∃u ∈ L : q0

u
−→ q in A ⇔ ∃u ∈ L : ν(q) = u−1L ⇔ ν(q) ∈ FL

It follows from (ii) that any complete DFA accepting L contains at least n = |QL|
states! Condition (iii), in turn, says that any complete DFA accepting L can be changed
to AL simply renaming the states by the function ν. In general, this renaming is not
one–to–one, but if the DFA contains the minimal number of states, then it is one–to–one,
that is a real renaming. So we obtain:

Theorem 2.18. For each regular language L there exists the unique complete DFA of
the minimal size obtainable from AL by renaming the states.

Of course, the above also gives a method to construct the minimal DFA: Compute
all the sets u−1L. This, however, is tedious, so we describe a more practical method.

Assume that a complete DFA A is found, for example, by the subset construction.
We define the minimization procedure:

I. Remove from A those states (and transitions connected to them) which are not
reachable from the initial state — this makes A connected. This can be done by a
procedure similar to that computing 1-closure of a state in the proof of Theorem 2.2.

II. Merge two equivalent states of A, that is states qi and qj satisfying

Li = Lj. (2.11)

Let us merge qj to qi. Then, of course, transitions leaving from qj are removed, and
transitions of the form δ(p, a) = qj are replaced by δ(p, a) = qi. The automaton remains
deterministic, and, by (2.11), equivalent to the original one. However, it does not need
to be connected any more.

III. Repeat the above two procedures a finite number of times, until you find an
automaton Ar (equivalent to A), which is connected and reduced, that is does not
contain two equivalent states.

By considerations proving Theorem 2.18, Ar can be renamed to AL. Moreover, since
Ar is reduced, this renaming must be one–to–one. So we have proved

Theorem 2.19. A complete DFA is the minimal one (up to a renaming the states) iff
it is connected and reduced. Moreover, the minimization procedure always yields such a
DFA.

Remark 2.16. In the minimal DFA AL there might be a state u−1L = ∅. Of course,
if this is the case it can be removed and a smaller DFA is found, but it is not anymore
complete.

Remark 2.17. Assume that qi and qj are equivalent, i.e. they should be merged. Then
also the states δ(qi, w) and δ(qj, w) are equivalent and forced to be merged (or deleted).

Remark 2.18. To apply the above minimization procedure, it is important to know

how to test (2.11), i.e. Li
?
= Lj. This is a special case of the equivalence problem of

DFA´s, and hence can be algorithmically solved, cf. page 19. A better algorithm can
be based on the following equivalence:

Li = Lj iff Li ∩ Σ<n = Lj ∩ Σ<n,

where n = |Q| and Σ<n denotes the set of words shorter than n. We omit the proof
here.

2.5 Generalizations of FA 29

Example 2.1 (contin-
ued). We found on page 12
the following DFA for the
language Σ∗abaΣ∗. Clearly,
the states 013, 023 and 03
are equivalent, and can be
merged, either directly or in
two steps. All the other
states are pairwise inequiv-
alent:

023

03

01 020 013
a ab

b

a ab

a

b

b

b

a

1 ∈ L013 \ (L0 ∪ L01 ∪ L02) , a ∈ L02 \ (L0 ∪ L01) and ba ∈ L01 \ L0.

2.5 Generalizations of FA

In the next two sections we define briefly three generalizations of FA, and consider a bit
more FA with outputs, that is finite transducers.

Alternating finite automaton, AFA for short, is like an NFA, but acceptance is defined
in a more general way. Recall that a DFA associates to an input w a unique computation,
while an NFA associates to it a computation tree, which is accepting if at least one leaf
is labeled by a final state. In an AFA the set of states is divided into two parts Q∃
and Q∀, existential and universal states, and an input word is accepted if any subtree
starting from a universal state has the property that all leaves are labeled by accepting
states. Without giving a formal definition we illustrate above as follows:

w:

q0

qf

DFA:

∨

∨

∨

NFA:

q0

qf

@@��
��@@

��@@ ��@@

@@��
��@@

��@@

AFA:

q0

all final

∃

∃∀

∀
...

�� @@

�
�

�

A
A
A

@@

Figure 2.2: Accepting computations in DFA, NFA and AFA.

The following example shows that some languages can be accepted with a lot fewer
states by an AFA than by an NFA.

Example 2.2. For a prime number p let Lp = {anpa | n ≥ 0}. Take the t first primes
and consider the language

Lt =
⋂

i≤t

Lpi
= {anqa | n ≥ 0},

where pi denotes the ith prime and q =
∏

i≤t pi. Clearly, any NFA accepting Lt must
contain at least q states. On the other hand Lt is accepted by an AFA A constructed
as follows:

2.5 Generalizations of FA 30

First let Api
be a DFA accepting Lpi

:
a

q
0

qp
i

a
p

i

Second A is built from these as shown beside: q
0

a
qp

1

a
p

1

qp

a
p

a

a
p

t

qp
i

qp
t

Now, the number of states of A is 1+
∑

i≤t pi = n. It can be shown, by the result that
there always exists a prime in the interval [n, 2n], that q is not polynomially bounded
on n.

On the other hand, one can show

Proposition 2.20. Each language accepted by an AFA is regular.

As another extension of an FA we mention two–way finite automata, 2FA for short.
A (deterministic) two–way FA is (Q, Σ, δ, q0, F), where δ is a partial mapping Q×Σ→
Q×{−1, 0, 1} and everything else is as in DFA. The second component in the value of δ
tells whether the reading head goes to the left, stay where it is, or goes to the right. The
computation starts at the left end of the input word and is accepting if the automaton
enters to a final state after leaving the input word at its right end.

Proposition 2.21. Each language accepted by a 2FA is regular.

Remark 2.19. Sometimes 2FA´s are defined with endmarkers, that is, input is of the
form $w#, where $, # 6∈ Σ. Also one can define nondeterministic 2FA´s in a natural
way. In both cases Proposition 2.21 holds.

Example 2.3. Let L ⊆ Σ∗ be accepted by an n-state DFA A. Then $LR# is accepted
by an (n + 2)-state 2FA. Indeed, let A = (Q, Σ, δ1, i, F), and define the 2FA A2 as
follows:

δ2(q0, a) = (q0, 1) for a ∈ Σ ∪ {$},
δ2(q0, #) = (i,−1),
δ2(q, a) =

(
δ1(q, a),−1

)
for q ∈ Q, a ∈ Σ,

δ2(f, $) = (qf , 1) for f ∈ F,
δ2(qf , x) = (qf , 1) for all x,

where q0 and qf are initial and final states of A2.
Now we apply the above to the following: Consider the language

Li =
{
w ∈ {0, 1}∗ | ith letter equals to 1

}
.

Clearly, Li is accepted by an (i+1)-state DFA. Its reversal is accepted also by an (i+1)-
state FA, but only nondeterministically. Indeed, one can show that any DFA accepting
LR

i contains at least 2i states.
As a conclusion: 2FA may save exponential number of states!

2.6 Finite transducers 31

As the third extension of an FA we consider finite automata with multiplicities, which
leads to the theory of rational power series. Here we do not only specify, whether the
input word is accepted or not, but also count how many times it is accepted — zero,
of course, means that it is not accepted. Consequently, we associate with an NFA A a
function fA : Σ∗ → N

fA(w) = the number of times w is accepted in A.

Example 2.4. Consider the following NFA A.
Then clearly, fA(1) = 1, fA(a) = 1 and 0 1

a

a

a

fA(an) = fA(an−1) + fA(an−2), for n ≥ 2,

since each accepting path is uniquely of the form 0
an−1

−→ 0
a
−→ 0 or of the form 0

an−2

−→
0

a
−→ 1

a
−→ 0. Consequently, the value of fA on an is the nth Fibonacci number.

As an example of results in this theory we state

Proposition 2.22. Given two NFA A1 and A2. It is undecidable whether

fA1
(w) ≤ fA2

(w) for all w ∈ Σ∗.

Remark 2.20. Recently the above theory has turned out useful in computer graphics,
in generating and compressing pictures.

2.6 Finite transducers

This section is devoted to finite transducers, which are finite automata with outputs.
So far the only output we have had has been “accept” or “reject”. Finite transducers
are capable of producing outputs in every step of their computations, thus computing
functions (or relations) Σ∗ → ∆∗.

Definition 2.9. A finite transducer, FT for short, is a sixtuple T = (Q, Σ, ∆, E, q0, F),
where

Q is a finite set of states,

Σ and ∆ are input and output alphabets,

E ⊆ Q× Σ∗ ×∆∗ ×Q is a finite set of transitions,

q0 ∈ Q is the initial state,

F ⊆ Q is the set of final states.

2.6 Finite transducers 32

If we forget the output structure, that is ∆, we obtain a GFA, the underlying FA of
T . If the underlying FA is an NFA, then T is called a generalized sequential machine,
gsm for short, or a sequential transducer. Finally, if the underlying FA is a DFA, then
T is called a deterministic generalized sequential machine, dgsm for short (actually,
sometimes gsm and dgsm are defined without final states). By a normalized FT we
mean a FT satisfying E ⊆ Q× (Σ ∪ {1})× (∆ ∪ {1})×Q.

We can extend our notations of an FA in a straightforward way:

p
u,v
−−−→ q means that (p, u, v, q) ∈ E;

p
u,v
−−−→ q in T







means that there exist n ≥ 0, words u1, . . . , un in Σ∗,
v1, . . . , vn in ∆∗, and states p0, . . . , pn such that p =
p0, q = pn and (pi−1, ui, vi, pi) ∈ E for i = 1, . . . , n.

Now a finite transducer defines the relation R(T) : Σ∗ → ∆∗ or computes the function
or transduction T : Σ∗ → P(∆∗)

R(T) = {(u, v) ∈ Σ∗ ×∆∗ | ∃q ∈ F : q0
u,v
−−−→ q in T }.

Here P(∆∗) denotes the power set of ∆∗, i.e. the family of subsets of ∆∗.
The domain and range of T are defined in a natural way:

dom(T) = {u ∈ Σ∗ | ∃v ∈ ∆∗ : (u, v) ∈ R(T)},

range(T) = {v ∈ ∆∗ | ∃u ∈ Σ∗ : (u, v) ∈ R(T)}.

Finally, a relation R of Σ∗ ×∆∗, often denoted R : Σ∗ → ∆∗, is rational if it is defined
by a finite transducer.A rational function Σ∗ → ∆∗ is a rational relation, which is a
partial function.

Remark 2.21. Finite transducers are special cases of finite automata on arbitrary
monoids. Indeed, the labels of the transitions are elements of the product monoid
Σ∗ ×∆∗. But, since this monoid is not free, the theory is in many respects more com-
plicated.

Example 2.5. The following FT com-
putes all nonempty factors of any input
word w ∈ {a, b}∗. 1 20

a , a

b , b

a , 1

b , 1

b , 1

b , 1

a , 1a , a
b , b

a , 1

Example 2.6. Note that the value of T for a
given input w need not be finite, in general:

10
a , 1

1 , a

Directly from the definitions above we derive:

Theorem 2.23. For each FT both dom(T) and range(T) are regular.

It is also clear, cf. Examples 2.5 and 2.6, that we cannot eliminate the empty word
from the labels of transitions. However, the easy part of the proof of Theorem 2.2
immediately yields:

2.6 Finite transducers 33

Theorem 2.24. For each FT there exists an equivalent normalized FT.

Example 2.7. The partial function f : {a, b}∗ → {a, b}∗

f
(
(ab)n

)
= anbn for n ≥ 0,

f(w) = 1 for w 6∈ (ab)∗

is not rational. Indeed, if it were, then by Theorem 2.23 range(f) = {anbn | n ≥ 0}
would be regular, which is not the case.

Our next theorem shows a connection between rational relations and rational (reg-
ular) languages.

Theorem 2.25 (Nivat, 1968). A relation R ⊆ Σ∗ ×∆∗ is rational iff there exist an
alphabet Γ, morphisms h : Γ∗ → Σ∗ and g : Γ∗ → ∆∗ and a regular language L ⊆ Γ∗

such that
R =

{(
h(w), g(w)

)
| w ∈ L

}
. (2.12)

Proof. ⇒: Let R = R(T) for a FT T = (Q, Σ, ∆, E, q0, F). Set Γ = E and define

I = {(p, u, v, q) ∈ E | p = q0} ⊆ Γ,

T = {(p, u, v, q) ∈ E | q ∈ F} ⊆ Γ,

M = {(p, u, v, q)(p′, u′, v′, q′) ∈ E2 | q 6= p′} ⊆ Γ2,
and finally,

L = (I Γ∗ ∩ Γ∗ T) \ Γ∗M Γ∗.

Consequently, by the closure properties of Reg, L is regular. We shall show

Claim. L consists of exactly those sequences of transitions of T , which are accepting
in T .

Now, by the definition of I, T and M , sequence s is in L iff

– it starts with a symbol in I, that is, with a transition having the first component
equal to q0, and

– it ends with a symbol in T , that is, with a transition having the last component
in F , and

– it does not contain a factor from M , that is, consecutive transitions for which the
last component of the former 6= the first component of the latter.

The last condition is clearly equivalent to: in each factor of s of the length 2 the last
component of the former letter = the first component of the latter letter.

So the claim follows.
Now, the presentation (2.12) follows when we define the morphisms

h : Γ∗ → Σ∗, h(p, u, v, q) = u
and

g : Γ∗ → ∆∗, g(p, u, v, q) = v

for all (p, u, v, q) ∈ Γ.
⇐: Assume that R has the presentation (2.12) with L = L(A) for a DFA A =

(Q, Γ, δ, q0, F). Change A to a FT T = (Q, Σ, ∆, E, q0, F) by setting

p
h(a), g(a)
−−−−−→ q in E iff δ(p, a) = q.

Obviously, R(T) = R.

2.6 Finite transducers 34

Theorem 2.25 has a number of variations or corollaries. To state those we recall some
terminology. First a relation R ⊆ Σ∗ × ∆∗ can be viewed as a many valued function
R : Σ∗ → ∆∗, so that, for example, the expression “(u, v) ∈ R” can be written as
“v ∈ R(u)”. Second a composition of relations R : Σ∗ → ∆∗ and R′ : ∆∗ → Γ∗ is well
defined: (u, v) ∈ R ◦R′ : Σ∗ → Γ∗ iff ∃w ∈ ∆∗ : (u,w) ∈ R and (w, v) ∈ R′. Further we
need the operation “intersection with a regular language”: For a given regular language
L ⊆ Σ∗ the operation

⋂
L : Σ∗ → Σ∗ maps w to the language {w} ∩ L.

Corollary 2.26. A relation R : Σ∗ → ∆∗ is rational iff it can be factorized as

R = g ◦
⋂

L ◦ h−1,

where L ⊆ Γ∗ is regular and h : Γ∗ → Σ∗, g : Γ∗ → ∆∗ are morphisms.

Proof. This is just a reformulation of Theorem 2.25:

(u, v) ∈ R ⇔ v ∈ R(u) ⇔ v ∈ g ◦
⋂

L ◦ h−1(u)

⇔ v ∈ g
(
h−1(u) ∩ L

)
⇔ ∃w ∈ L : v = g(w), w ∈ h−1(u)

⇔ ∃w ∈ L : v = g(w), u = h(w) ⇔ (u, v) ∈ r.h.s. of (2.12).

Corollary 2.27. For each FT T and a regular language L T (L) is regular, that is the
family of regular languages is closed under rational transductions.

Proof. We have to show that T (L) = {T (w) | w ∈ L} is regular. But, by Corollary
2.26, T (L) = g

(
h−1(L) ∩ L′

)
, for suitable defined morphisms h and g, and a regular

language L′. So the claim follows from closure properties of the family Reg.

Example 2.7 (continued). There exists no FT T satisfying T
(
(ab)n

)
= anbn. Indeed,

if such an FT would exist then T
(
(ab)∗

)
= {anbn | n ≥ 0} would be regular.

Before stating a sharpening of Theorem 2.25, we need one more notion.

Definition 2.10. A morphism π : Σ∗ → ∆∗, with ∆ ⊆ Σ, is a projection if π(a) = a,
for a ∈ ∆, and π(a) = 1, for a ∈ Σ \∆.

Corollary 2.28. Each rational relation R ⊆ Σ∗×∆∗, with Σ∩∆ = ∅, has a presentation

R =
{(

π1(w), π2(w)
)
| w ∈ L1

}
,

where L1 ⊆ (Σ ∪ ∆)∗ is regular and π1 : (Σ ∪ ∆)∗ → Σ∗ and π2 : (Σ ∪ ∆)∗ → ∆∗ are
projections.

Proof. Follows directly from the proof of Theorem 2.25, when we assume that transducer
T is normalized, as we can do by Theorem 2.24, and set

L1 = f(L),

where L ⊆ Γ∗ is as in the proof of Theorem 2.25, and f : Γ∗ → (Σ ∪∆)∗ is a morphism
defined as:

f(p, a, 1, q) = a for all a ∈ Σ, p, q ∈ Q,

f(p, 1, b, q) = b for all b ∈ ∆, p, q ∈ Q,
and

f(p, 1, 1, q) = 1 for all p, q ∈ Q.

2.6 Finite transducers 35

Now we are ready for another basic result of rational relations.

Theorem 2.29. Rational relations are closed under composition.

Proof. Let T : Σ∗ → Γ∗ and T ′ : Γ∗ → ∆∗ be rational relations. By renaming we can
assume that Σ ∩ Γ = ∅ and ∆ ∩ Γ = ∅. Hence we can apply Corollary 2.28, and so
by Corollary 2.27, we have the situation illustrated by the solid lines of the following
diagram:

(Σ ∪∆ ∪ Γ)∗

(Σ ∪ Γ)∗ (∆ ∪ Γ)∗

Γ∗

(Σ ∪ Γ)∗

Σ∗

(∆ ∪ Γ)∗

,∆∗

�
��

@
@@

�
��

@
@@

x y

> >

> >
x y x y

π π′
⋂

L
⋂

L′

τ τ ′
π1 π2 π′1

π′2

where L and L′ are regular languages over appropriate alphabets and all π´s are pro-
jections of the indicated form.

Assume first that Σ ∩ ∆ = ∅. Add to the above diagram the projections π and π ′

(denoted by dotted lines). We claim that

(π′1)
−1 ◦ π2 = π′ ◦ π−1. (2.13)

Indeed, for any w = α0a1α1 · · · anαn, with αi ∈ Σ∗, ai ∈ Γ, we have

(π′1)
−1 ◦ π2(w) = {β0a1 · · · anβn | β1, . . . , βn ∈ ∆∗} = π′ ◦ π−1(w).

Now, we can write

(T ′ ◦ T)(u) = π′2

(

(π′1)
−1
(

π2

(
π−1

1 (u) ∩ L
))

∩ L′
)

= π′2

(

(π′1)
−1 ◦ π2

(
π−1

1 (u) ∩ L
)
∩ L′

)

(2.13)
= π′2

(

π′ ◦ π−1
(
π−1

1 (u) ∩ L
)
∩ L′

)

(∗)
= π′2

(

π′
(
(π1 ◦ π)−1(u) ∩ π−1(L)

)
∩ L′

)

(∗∗)
= π′2 ◦ π′

(
(π1 ◦ π)−1(u) ∩ π−1(L) ∩ (π′)−1(L′)

)

= h
(
g−1(u) ∩ L′′

)
,

where h = π′2 ◦ π′, g = π1 ◦ π are morphisms and L′′ = π−1(L) ∩ (π′)−1(L′) is a regular
language. Step (∗) follows since inverse mappings are distributive over intersections,
and (∗∗) follows from the identity π(K)∩L = π

(
K ∩ π−1(L)

)
, which holds when π is a

projection.
So we conclude, by Theorem 2.25, that T ◦ T ′ is rational if Σ ∩ ∆ = ∅. If this is

not the case, we rename ∆ by a morphism ν, apply the above, and finally remove the
renaming by ν−1.

2.6 Finite transducers 36

We conclude this section with two examples.

Example 2.8. We show that an FT can add
two binary numbers. We use the reverse binary
presentation for binary numbers. The input for
an FT is a pair presenting the same bit of num-
bers, and the machine uses an endmarker. The
transducer is given by its graph, where for clar-
ity we use ε for the empty word.

0 1

h

1
0((, 1

0
0((, 0

0
1((, 1

0
0((, 1

0
1((, 0 1

0((, 0

1
1((, 11

1((, 0

, # , 1
�

Example 2.9. Contrary to the above we claim that no FT can compute the product
of binary numbers (under the above notations). Assume the contrary: T× computes the
product. Consider the word

wn = 10n−11, n ≥ 2,

which represents the number 2n + 1. So by our assumption,

T×((wn
wn) #) = 10n10n−21.

Clearly, the language

L = {(wn
wn) # | n ≥ 1} = (1

1) (0
0)+ (1

1) # ⊆ {(0
0) , (1

1) , #}∗

is regular. So should be T×(L), by Corollary 2.27, but this is not the case.

Chapter 3

Context–free languages

3.1 Context–free grammars

Context–free languages have turned out very useful in different areas of computer sci-
ence, such as in the theory of programming languages, in compiling and in parsing.
Context–free languages, CF languages for short, as well as context–free grammars, CF
grammars for short, were defined on pages 6 and 7. In order to fix notations we recall
that a CF grammar is a quadruple

G = (V, Σ,P, S),

where P consists of the productions of the form

A −→ β , with A ∈ N = V \ Σ and β ∈ V ∗.

Productions of this form are called CF productions, in general. CF productions are
linear, if they are of the form

A −→ αBα′ , with A,B ∈ N and α, α′ ∈ Σ∗.

CF grammar is called linear, if its productions are linear, and the family of languages
generated by such grammars is called the family of linear languages, Lin for short.

Example 3.1. Consider the grammar G with the productions

S −→ SS | (S) | 1,

where Σ = { (,) }. We claim that L(G) consists of exactly all correctly built sequences
of right and left parenthesis. Indeed, it follows from the productions (by induction) that
all w in L(G) are in this language. Conversely, again by induction, each such sequence
can be generated by above productions, cf. Exercises. This language is denoted by D1

and called Dyck language over the binary alphabet.

Example 3.2. The CF grammar with productions

E −→ E + T | T,

T −→ T ∗ F | F,

F −→ (E) | a,

and Σ = {a, (,), +, ∗}, and E as the start symbol generates all correct arithmetic ex-
pressions, as can be seen straightforwardly.

37

3.1 Context–free grammars 38

Next, we fix some further terminology.

Definition 3.1. Consider a derivation according to G:

S ⇒ w1 ⇒ w2 ⇒ . . . ⇒ wn−1 ⇒ w. (D)

The derivation (D) is called terminal, if w ∈ Σ∗. Words wi, as well as w, are called
sentential forms. If in (D), in each derivation step the nonterminal rewritten in wi is the
leftmost one, then the derivation is called the leftmost derivation of w. Of course, we can
consider also derivations starting from A ∈ N \ {S} — these are called A-derivations.

Now we associate the derivation (D) (or A-derivation in general) with a derivation
tree (or A-derivation tree) as follows:

(i) For n = 1:

A⇒ 1 or A⇒ x1 · · · xk, xi ∈ V :
1

A

or

A
�

�
�

T
T
T

�
�
�

x1 x2 · · · xk

(ii) For n ≥ 2:

If w1 = u1A1u2 · · ·Akuk+1 and
w = u1v1u2 · · · vkuk+1 and

Ai ⇒∗ vi is associated with pi:
vi

�
�
B
B

then (D) is associated with the
tree shown besides.

S
�

�
�

�
��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

A
A
A
A
AA

T
T
T
T
TT

@
@

@
@

@@· · ·
︸︷︷︸

u1

· · ·
︸︷︷︸

u2

· · · · · ·
︸︷︷︸

uk+1

�
�
�

��

B
B
B
BB

�
�
�

��

B
B
B
BB

p1 pk

v1 vk

Of course, the correspondence between derivations and derivation trees is not one–to–
one, in general. However, if we restrict our considerations to the leftmost derivations
only, then this correspondence becomes one–to–one.

¿From a derivation tree T we can read the word generated by a corresponding deriva-
tion simply by catenating the leaves from left to right. This word is called the yield of T ,
in symbols yield(T). Finally, T (G) denotes the set of all trees associated with terminal
derivations, so that L(G) = yield

(
T (G)

)
.

Definition 3.2. We call CF grammar G ambiguous, if for some word w ∈ L(G) there
exist at least two different derivation trees, that is two different leftmost derivations
(of course, derivations are the same if they consist of exactly the same sequence of
applications of productions). Otherwise G is unambiguous. A CF language is inherently
ambiguous, if each grammar generating it is ambiguous.

Example 3.3. A CF grammar with the productions

S −→ aAbB | aAbBcB,

A −→ α1 | α2,

B −→ S | β1 | β2

is ambiguous:

S
�
�
�

�
�

�

B
B
B

@
@
@

a A b B

α1 S
�
��

E
EE

�
��

�
�

�

T
TT

@
@
@

a A b B c B

α2 β1 β2

S
�
��

E
EE

�
��

�
�

�

T
TT

@
@
@

a A b B c B

α1 S β2

�
�
�

�
�

�

B
B
B

@
@
@

a A b B

α2 β1

3.1 Context–free grammars 39

An example of a CF language which can be proved inherently ambiguous is the
language {anbncmdm | n,m ≥ 1} ∪ {anbmcmdn | n,m ≥ 1}.

We move to prove several normal forms for CF grammars.

Definition 3.3. Let G = (V, Σ,P, S) be a CF grammar. We call a nonterminal A

– terminating if {w ∈ Σ∗ | A⇒∗G w} 6= ∅, and

– reachable if ∃u, v ∈ V ∗ : S ⇒∗G uAv.

Further G is called reduced, if all of its nonterminals are both terminating and reachable,
or formally

∀A ∈ V, ∃u, v ∈ V ∗, w ∈ Σ∗ : S ⇒∗G uAv ⇒∗G uwv.

Theorem 3.1. For each CF grammar one can effectively find an equivalent reduced CF
grammar.

Proof. Let G = (V, Σ,P, S). We construct the set T of terminating nonterminals and
the set R of reachable nonterminals as follows:

T0 = {A ∈ N | ∃w ∈ Σ∗ : A→ w ∈ P},

Ti+1 = Ti ∪ {A ∈ N | ∃u ∈ (Ti ∪ Σ)∗ : A→ u ∈ P}, for i ≥ 0,

and

R0 = {S},

Ri+1 = Ri ∪ {A ∈ N | ∃B ∈ Ri, u, v ∈ V ∗ : B → uAv ∈ P}, for i ≥ 0.

We note that:

1) T0 ⊆ T1 ⊆ · · · ⊆ Ti ⊆ · · · ,

2) If Ti = Ti+1, then also Ti+1 = Ti+2,

3) Ti = Ti+1 at the latest when i = |N | − 1, and

4) T =
⋃

i≥0 Ti.

Consequently, by 1) – 3) T can be effectively found.
The argument for finding R is exactly the same.
Now we construct an equivalent reduced CF grammar for G. This is done in two

steps.
I. Eliminate all nonterminating nonterminals. By the above procedure, we can find

the set N \T , and omit these and productions using these nonterminals (in either of the
sides). We claim that the grammar thus obtained, say GT , is equivalent to G.

First GT cannot generate any terminal words outside L(G), since all productions of
GT are available in G. Conversely, if w ∈ L(G), w is in Σ∗ and it has a derivation Dw

according to G. Since w ∈ Σ∗ all nonterminals in Dw are in T , so that Dw is a derivation
according to GT , as well.

II. Eliminate all nonreachable nonterminals in GT . As in case I this is done by
throwing out some nonterminals and productions associated to those — namely those
which are nonreachable in GT . A new grammar thus obtained, say GTR, is equivalent to
GT (and hence also to G). Indeed, as above the inclusion L(GTR) ⊆ L(GT) is clear, and

3.1 Context–free grammars 40

the reverse follows from the fact that any (terminating) derivation of GT contains only
reachable nonterminals, and so it is a derivation of GTR, too.

To conclude the proof, we claim that GTR is reduced. Surely it contains only reachable
nonterminals. So it is enough to show that any nonterminal of GTR is terminating in
GTR. Assume the contrary, that A is not terminating in GTR. Now, A is terminating in
GT , but not in GTR, which means that for some B we have

A ⇒∗GT
uBv ⇒∗GT

w ∈ Σ∗,

where A is in GTR, but B is not. Since A is nonterminal of GTR, it is reachable in GT .
But then, by above, so is B, and thus B ∈ GTR, a contradiction.

Remark 3.1. The two steps of the proof of Theorem 3.1 cannot be done in the other
order: Assume that A→ BC is the only production for A and

S ⇒∗ · · ·A · · · ⇒∗ · · ·BC · · ·

and
B ⇒∗ w ∈ Σ∗ and ∀u : if C ⇒∗ u, then u 6∈ Σ∗.

Now, if we first remove nonreachable terminals and then nonterminating ones, then A,
B and C remain in the first step, and in the second step C and A are removed, but B
is not. However, B does not remain reachable!

In the above normal form we eliminated unnecessary nonterminals. In what follows,
we restrict the form of productions in different ways.

Definition 3.4. We say that a CF grammar G = (V, Σ,P, S) is in

A) Chomsky normal form if the productions are of the form

(i) A→ BC, A,B,C ∈ N ,

(ii) A→ a, A ∈ N, a ∈ Σ, or

(iii) S → 1,

and moreover, if the production S → 1 occurs, then B 6= S and C 6= S for all
productions in (i).

B) Greibach normal form if the productions are of the form

(i) A→ aA1 . . . An, n ≥ 0, A,Ai ∈ N, a ∈ Σ, or

(ii) S → 1, and in this case, S does not occur on the r.h.s. in other productions.

C) Standard 2-form if it is in Greibach normal form with n at most 2 for all productions
in (i) of B).

Theorem 3.2. Each CF language is generated by a CF grammar GCNF in Chomsky
normal form. Moreover, GCNF can be effectively found.

Proof. Let L be generated by a CF grammar G = (V, Σ,P, S). We first replace S by a
new initial symbol S ′ and add the production S ′ → S. Clearly, the language generated
is not changed, and S ′ does not occur on the right hand sides of the productions. By
renaming we can assume that G satisfies this condition.

3.1 Context–free grammars 41

Next we eliminate from G productions of the form B → 1, with B 6= S. Define a
subset N1 of N by:

N1 =
{
B ∈ N \ {S} | B ⇒∗G 1

}
.

Consequently, N1 consists of those nonterminals which derive the empty word according
to G. Clearly, N1 can be found by a procedure similar to those used in Theorem 3.1 to
find T and R.

Now, let
A −→ x1 · · · xn, xi ∈ V,

be a production in G. We replace it by the following set of productions

{
A→ α | α = δ(x1) · · · δ(xn) 6= 1, δ(xi) ∈ {xi, 1} if xi ∈ N1 and δ(xi) = xi otherwise

}
.

Moreover, if 1 ∈ L(G), which can be tested, we add the production S → 1. Let G1 be
the CF grammar thus constructed. Clearly, the only possible erasing production in G1

is S → 1.

Claim I. L(G1) = L(G).

Proof. L(G1) ⊆ L(G). Let w ∈ L(G1). If w = 1, then clearly 1 ∈ L(G). Otherwise,
by the construction of G1, we can translate a derivation

S ⇒∗G1 w to S ⇒∗G u1a1u2 · · · unanun+1

for some ai´s and ui´s such that w = a1 · · · an and ui ∈ N+
1 . Since, by the choice of N1,

ui ⇒∗G 1, we conclude that w ∈ L(G).
L(G) ⊆ L(G1). Let w ∈ L(G). Again the case w = 1 is clear. Otherwise we derive

from a derivation
S ⇒∗G w ∈ Σ+ (3.1)

a derivation
S ⇒∗G1 w

as follows: in each step of (3.1) we erase all those occurrences of the right hand side
of the considered production which contributes to w only the empty word. By the
construction of G1, this yields a derivation according to G1.

So we have proved Claim I, and thus eliminated the erasing productions.
Next we introduce a new set of nonterminals

{Aa | a ∈ Σ},

add the productions
Aa −→ a, a ∈ Σ

and change each occurrence of a terminal a by its counterpart Aa. Clearly, the grammar
thus obtained is equivalent to the original one, and moreover, satisfies the requirements
for the Chomsky normal form except that the productions of the form

A −→ B1 · · ·Bn, n ≥ 1, Bi ∈ N (3.2)

are still possible.
A production of the form (3.2) with n ≥ 3 is easy to eliminate: Replace it by the

following set of productions:

A→ B1C1, C1 → B2C2, . . . , Cn−1 → Bn−1Bn,

3.1 Context–free grammars 42

where Ci´s are new nonterminals (distinct for each production of the form (3.2)). Ob-
viously, this operation preserves the language.

Finally, we have to eliminate chain productions, i.e. productions of the form A→ B.
At this point we assume that such productions are the only illegal productions in G.

For each A ∈ N we define (like N1 above) the sets

NA = {B ∈ N | A⇒∗G B},

and the set of productions

PA = {A→ α | ∃B ∈ NA, α ∈ Σ ∪N 2 : B → α}.

Clearly, if A → α ∈ PA, then A ⇒∗G α, so that we can add PA to G without changing
the language it generates. Let G+ be obtained by adding all above PA´s to G. Now,
we omit all the chain productions from G+ to obtain a Chomsky normal form grammar
GCNF .

Claim II. L(GCNF) = L(G+) (= L(G)).

Proof. L(GCNF) ⊆ L(G+). Obvious since all productions of GCNF are in G+.
L(G+) ⊆ L(GCNF). Let w ∈ L(G+), i.e.

S ⇒∗G+ w ∈ Σ∗. (3.3)

If no chain productions are used in (3.3), then the derivation is according to GCNF , as
well. If, in turn, (3.3) uses a chain production, say is of the form

S ⇒∗G+ uAv ⇒G+ uBv ⇒∗G+ uCv ⇒G+ uαv ⇒∗G+ w, with α ∈ Σ ∪N 2,

we can transform a derivation uAv ⇒∗G+ uαv to a derivation uAv ⇒∗GCNF
uαv, and hence

by induction w ∈ L(GCNF).
So we have proved Claim II and Theorem 3.2.

By calling a language L 1-free if L ⊆ Σ+ we obtain from the proof of Claim I

Corollary 3.3. Each 1-free CF language is generated by a nonerasing CF grammar i.e.
by a CF grammar having no productions of the form A→ 1.

We turn to prove that each CF language can be generated by a CF grammar in
Greibach normal form, as well.

We need two auxiliary constructions.

Definition 3.5. Let G = (V, Σ,P, S) be a CF grammar. A production A→ β is called
an A-production. Further we call a production left recursive, if it is of the form

A −→ Aα, with α ∈ V ∗.

In the following constructions we eliminate from G I) a nonterminating A-production
II) all left recursive A-productions.

I. Elimination of a nonterminating A-production. Let A→ α1Bα2 be an A-production
and B → β1 | β2 | · · · | βr be all B-productions of G. If we replace the production
A→ α1Bα2 by the productions A→ α1β1α2 | α1β2α2 | · · · | α1βrα2, then the language
remains unchanged.

3.1 Context–free grammars 43

Proof. Let G1 be the grammar obtained as above from G.
L(G1) ⊆ L(G). A use of production A→ α1βiα2 can be simulated by a derivation of

G as follows: A⇒G α1Bα2 ⇒G α1βiα2.
L(G) ⊆ L(G1). If a production a → α1Bα2 is used in a terminal derivation, then

the above occurrence of B must be replaced later by some βi. Consequently, the above
derivation of G can be simulated by G1.

II. Elimination of all left recursive A-productions. Let A → Aα1 | · · · | Aαr be the
set of all left recursive A-productions of G and A → β1 | · · · | βs the set of all other
A-productions of G. Let G1 = (V ∪ {B}, Σ,P1, S) be a CF grammar, where B is a
new nonterminal, and P1 is obtained from P by replacing all A-productions by the
productions

A −→ βi | βiB, i = 1, . . . , s,

B −→ αi | αiB, i = 1, . . . , r.

Then L(G1) = L(G).
Proof. L(G) ⊆ L(G1) follows from the facts that in a leftmost terminal derivation of

G a sequence of productions A→ Aαi is followed by a production A→ βj and that the
sequence

A ⇒ Aαi1 ⇒ Aαi2αi1 ⇒ . . . ⇒ Aαip · · ·αi1 ⇒ βjαip · · ·αi1

can be replaced in G1 by

A ⇒ βjB ⇒ βjαipB ⇒ . . . ⇒ βjαip · · ·αi1.

L(G1) ⊆ L(G) follows since the above argument can be reversed.

Now, we are ready for

Theorem 3.4. Each CF language can be generated by a CF grammar GGNF in Greibach
normal form. Moreover, such a GGNF can be effectively found.

Proof. Let L be generated by a CF grammar G = (V, Σ,P, S) in Chomsky normal form.
If 1 ∈ L(G), then G contains a production S → 1, and deleting it we get Chomsky
normal form grammar for L\{1}. If we can construct a Greibach normal form grammar
for this language, we get it also for L by adding S → 1 and possibly choosing a new
start symbol. Therefore, we can assume that L is 1-free.

Let
N = {A1, A2, . . . , Am}.

In the first step we modify G such that

if Ai → Ajγ is a production, then j > i. (3.4)

This is achieved by applying procedures I and II repeatedly starting from A1 and pro-
ceeding to Am:

For A1 it is enough to apply II once to obtain a grammar satisfying (3.4). Assume
that we already reached a situation, where (3.4) is satisfied for i < k.

If Ak → Ajγ, with j < k, is a production in our grammar constructed at this point,
we apply procedure I to eliminate it, or more precisely to replace it by new productions

3.1 Context–free grammars 44

which are obtained by substituting for Aj all possible right hand sides of Aj-productions.
Since Aj´s, for j < k, already satisfy (3.4), after at most k−1 applications of procedure I
(for all choices) we obtain a grammar, where productions Ak → Ajγ, j < k, are replaced
by productions of the form Ak → Ajγ, with j ≥ k (and of the form Ak → aγ, with
a ∈ Σ). Now productions of the form Ak → Akγ can be eliminated simultaneously by
procedure II by introducing a new nonterminal Bk.

All in all this first step leads to a grammar, where productions are of the following
forms:

(i) Ai −→ Ajγ, j > i,

(ii) Ai −→ aγ, with a ∈ Σ,

(iii) Bi −→ γ ∈ (V ∪ {B1, . . . , Bi})∗.

In the second step we change Ai-productions to Greibach normal form. We first note:
γ´s in (i) and (ii) are in

(N ∪ {B1, . . . , Bm})
∗.

This follows, since for the original grammar this is true, since it was in CNF, and the
procedures leads from productions in this form to new ones being still in the same
form. Consequently, Am-productions are in GNF, since there are none of the form
(i). Moreover, Am−1-productions can be replaced by productions in GNF by applying
procedure I once. Repeating in the same way all Ai-productions can be replaced by
productions in GNF.

In the third step we have to deal with new Bi-productions. Bi-productions are
introduced in procedure II, when they are created from Ai-productions by the rule:
Ai → Aiα ⇒ Bi → α | αBi. So we have to analyze right hand sides of Ai-productions.
As we already noted they are in ({1} ∪ Σ)(N ∪ {B1, . . . , Bm})∗. Moreover, if such a
production does not start with a terminal, it starts, by the same argument we used
to conclude the form of γ above, with two A-nonterminals. Consequently, each Bi-
production starts with some Ai, so that after one application of procedure I it can be
replaced by GNF productions.

So we have completed our construction and found a Greibach normal form grammar
for L.

One can strengthen Theorem 3.4 to

Proposition 3.5. Each CF language can be generated by a CF grammar in standard
2-form.

Remark 3.2. The normal forms we proved are useful to prove properties of CF lan-
guages. For example, CNF guarantees that CF languages can be generated by very
regular derivation trees: each node has either exactly two nonterminal descendants or
only one terminal descendant.

GNF and standard 2-form resemble RL grammars, since productions are of the form

A −→ aB1 · · ·Bn, n ≥ 0, a ∈ Σ, Bi ∈ N.

In particular, standard 2-form grammar can contain, besides RL productions A → a
and A → aB, only productions of the form A → aBC. This, however, makes a big

3.2 Properties of CF languages 45

difference in generating power, since, as we shall see, “the family of CF languages is
much larger than the family of regular languages”.

Note also that GNF shows that CF languages can be generated in real time, i.e.
in the leftmost derivation of a terminal word each derivation step produces a terminal
letter.

3.2 Properties of CF languages

In this section we consider properties of CF languages. Some further properties are
shown later after showing that the family of CF languages can be characterized as
languages accepted by a certain type of automata — pushdown automata. The prop-
erties considered are closure properties, in order to be able to show that languages are
CF, pumping properties, in order to show that languages are not CF, and decidability
properties.

We start with closure properties.

Definition 3.6. We say that a transduction δ : Σ∗ → ∆∗ is a substitution, if it satisfies
δ(1) = {1} and

δ(ww′) = δ(w) · δ(w′) ∀w,w′ ∈ Σ∗.

Consequently, as in the case of a morphism, a substitution δ is completely defined
by the languages δ(a), a ∈ Σ. In fact, δ can be viewed as a morphism from Σ∗ into
the monoid of all languages over ∆. A substitution δ is finite, regular or context–free, if
languages δ(a), for a ∈ Σ are so.

Theorem 3.6. The family of CF languages is closed under CF substitutions.

Proof. Let G = (V, Σ,P, S) be a CF grammar and δ : Σ∗ → ∆∗ a CF substitution, i.e.
each δ(a), for a ∈ Σ, is CF, say generated by

Ga = (Va, ∆,Pa, Sa).

Assuming that (as we can)

(Va \∆) ∩ V = ∅ and (Va \∆) ∩ (Vb \∆) = ∅, ∀a, b ∈ Σ,

we define a CF grammar

Gδ = (V ∪
⋃

a∈Σ

Va, ∆,Pδ ∪
⋃

a∈Σ

Pa, S),

where Pδ is obtained from P by replacing each occurrence of any terminal a in each
production of P by Sa.

It follows immediately that L(Gδ) = δ
(
L(G)

)
.

Corollary 3.7. A morphic image of a CF language is CF.

Theorem 3.8. The family of CF languages is closed under rational operations.

3.2 Properties of CF languages 46

Proof. Let Li = L(Gi) for CF grammars Gi = (Vi, Σ,Pi, Si), i = 1, 2, where (V1 \ Σ1) ∩
(V2 \ Σ2) = ∅. Then CF grammars for the languages L1 ∪ L2, L1L2 and L∗1 can be
defined, respectively, as follows:

G∪ = (V1 ∪ V2 ∪ {S}, Σ,P1 ∪ P2 ∪ {S → S1 | S2}, S),

G· = (V1 ∪ V2 ∪ {S}, Σ,P1 ∪ P2 ∪ {S → S1S2}, S),

and

G∗ = (V1 ∪ {S}, Σ,P1 ∪ {S → SS1 | S1 | 1}, S),

where S is a new symbol.
It is obvious that the above constructions works as intended.

Since for any language L we have L+ = LL∗, we obtain

Corollary 3.9. The family of CF languages is closed under 1-free iteration.

The closure under the other Boolean operations than the union does not hold true
for context–free languages, as we shall see as a consequence of pumping properties of
these languages, which we start to consider now.

We recall that a pumping lemma for regular languages says that, if L is regular then
for each long enough word z there exists a factorization z = uxv, with x 6= 1, such that
ux∗v ⊆ L. Further as shown by the CF language L = {anbn | n ≥ 0} this does not
hold for CF languages. However, each word z of L can be factorized as z = uxwyz such
that uxnwynz ∈ L with xy 6= 1, for all n ≥ 0. Indeed, take u = w = z = 1, x = a and
y = b. Consequently, in L one can pump simultaneously in two places! This is true for
CF languages, in general, as we shall now show.

Actually, we prove a CF pumping lemma in a stronger form. In what follows, we are
allowed to specify some positions, i.e. occurrences of letters, in a given word — these
are called marked.

Theorem 3.10 (Iteration Theorem for CF languages). Let L be a CF language.
There exists a constant m such that for any word z in L if we mark at least m positions
in z, we can factorize z as z = uxwyv such that

(i) x and y contain together at least one marked position,

(ii) xwy contains at most m marked positions, and

(iii) uxnwynv ∈ L for all n ≥ 0.

Proof. Assume that L \ {1} is generated by Chomsky normal form grammar G =
(V, Σ,P, S). Let k = |V \ Σ| and set m = 2k+1.

Let z ∈ L and assume that there exist at least m marked positions in z (hence
|z| ≥ m). We consider the derivation tree Dz of z. We construct a particular path pz in
Dz as follows:

– The root of Dz, that is S, is in pz;

– If A is in pz and it has two nonterminal descendants B and C, then that one which
“contributes” more marked positions to z is in pz, and in the case they contribute
equally many we can choose either B or C arbitrarily;

3.2 Properties of CF languages 47

– If A is in pz and it has just one terminal descendant, then that is in pz.

Clearly, since G is in CNF pz is well defined. Further “what X contributes to z” is that
factor of z, which is the yield of the subtree of Dz starting at X. Finally, we say that
a nonterminal A above (as a node labeled by A in pz) is a branch point, if it has two
descendants and both of those contribute some marked positions to z. The construction
of pz can be illustrated as:

× = marked position
= pz

b = branch point

S
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e
e

......
�

�
�

@
@

@
�
�
�
�
�
�
�
�
�
�
�

E
E
E
E
E
E
E
E
E
E
E

......
�

�
�

T
T
TT
�
�
�
�
��

E
E
E
E
EE

......
��@@

�� TT �� TT× × × × ×
︸ ︷︷ ︸

z

b

b

b

Now, a crucial observation is that each branch point contributes to z at least half
as many marked positions as its previous branch point. By the choice of m there are at
least 2k+1 marked positions in z all of which are descendants of S. So in pz there are
at least k + 1 branch points. Consequently, among the k + 1 last branch points there
must be two with the same nonterminal label, say v1 and v2 with v1 closer to the root
and both labeled by A.

Let x, y and w be words in Σ∗ such that w and xwy are yields of the subtrees of Dz

starting at v2 and v1, respectively. Therefore

A ⇒∗G w and A ⇒∗G xAy.

Moreover, since v1 is among the last k + 1 branch points in pz we conclude from our
crucial observation that xwy contains at most 2k+1 marked positions. Hence, condition
(ii) in Theorem is satisfied. On the other hand, v1 is a branch point, so both of its
descendants contribute at least one marked position. Therefore so does at least one of
the words x or y, showing that condition (i) is satisfied, too. Finally, condition (iii) is
fulfilled if we choose words u and v such that uxwyv = z. Indeed, then for any n ≥ 0
we have

S ⇒∗G uAv ⇒∗G uxnAynv ⇒∗G uxnwynv.

Often the above theorem is proved by assuming that all positions in z are marked
— then instead of marked positions we can consider simply lengths of words:

Corollary 3.11 (Pumping Lemma for CF languages). For each CF language L
there exists a constant m such that any word z of the length at least m has a factorization
z = uxwyv such that

(i) |xy| ≥ 1,

3.2 Properties of CF languages 48

(ii) |xwy| ≤ m, and

(iii) uxnwynv ∈ L for all n ≥ 0.

Remark 3.3. The use of a CNF grammar in the above proof is not necessary, but it
makes the proof neater.

By Pumping Lemma we can prove that some languages are not CF.

Example 3.4. We show that the language

L = {anbncn | n ≥ 0}

is not CF. Marking b´s we could slightly decrease the number of different cases needed
to be analyzed in the below proof. However, Iteration Theorem would not make the
proof essentially simpler than the ordinary Pumping Lemma.

The ordinary Pumping Lemma works here: For some large enough n we can write

anbncn = uxwyv with |xy| ≥ 1

and
uxmwymv ∈ L for all m ≥ 0.

We have to analyze several cases:

1) If x or y is in d+e+, with d, e ∈ {a, b, c}, d 6= e, then clearly ux2wy2v 6∈ a∗b∗c∗, a
contradiction.

2) If x, y ∈ a∗∪ b∗∪ c∗, then either |uwv|a 6= |uwv|b or |uwv|a 6= |uwv|c, a contradiction.

Remark 3.4. There are languages which can be shown non–CF by Iteration Theorem,
but not by Pumping Lemma. An example of such a language is {a∗bc} ∪ {apbancan |
p ∈ P, n ≥ 0}, cf. Exercises.

Now we are ready for some nonclosure properties.

Theorem 3.12. The family of CF languages is not closed under intersection or com-
plementation.

Proof. Let

L1 = {aibic j | i, j ≥ 1}
and

L2 = {aib jc j | i, j ≥ 1}.
Then

L1 ∩ L2 = {anbncn | n ≥ 1},

which by Example 3.4 is non–CF (of course, it does not matter whether the index goes
from 0 or 1).

However, L1 is generated by CF productions

S −→ AC, A −→ aAb | 1, C −→ cC | 1.

Similarly, L2 is CF. So we have established the nonclosure under intersection.
The nonclosure under complementation follows from above and Theorem 3.8:

L ∩K = Σ∗ \
(
(Σ∗ \ L) ∪ (Σ∗ \K)

)
.

3.2 Properties of CF languages 49

Now we use pumping properties of CF languages to establish a connection between
regular and context–free languages — Parikh Theorem.

Definition 3.7. We call a mapping

π : Σ∗ → N|Σ|, π(w) = (|w|a1
, . . . , |w|an

),

where Σ = {a1, . . . , an}, Parikh mapping. Further we call two languages L and L′ letter
equivalent, if their Parikh images coincide, i.e. π(L) = π(L′).

Parikh Theorem states that each CF language is letter equivalent to a regular lan-
guage. We need as an auxiliary result the following modification of pumping lemma.

Lemma 3.13. Let G be a CF grammar in CNF and k a natural number. There exists
a constant p (depending on G and k) such that for any word z ∈ L(G) of length at least
p, there exists a derivation

S ⇒∗ uAv ⇒∗ ux1Ay1v ⇒
∗ ux1x2Ay2y1v ⇒

∗ . . .⇒∗ ux1 · · · xkAyk · · · y1v

⇒∗ ux1 · · · xkwyk · · · y1v = z
(3.5)

for some A ∈ N and words xi, yi, u, v, w ∈ Σ∗ such that

(i) |xiyi| ≥ 1, for i = 1, . . . , k,

(ii) |x1 · · · xkwyk · · · y1| ≤ p.

Proof. We first note that since G is in CNF, that is productions are either length in-
creasing A → BC or terminating A → a, there exists a constant q such that for any
word z of length at least q any derivation tree contains a path repeating a nonterminal
at least k + 1 times, that is z has a derivation of the form (3.5), where condition (i) is
satisfied since G is in CNF.

In the above derivation tree considered we can choose the path yielding (3.5) in such
a way that the subtree starting at the topmost occurrence of A does not contain on any
path any nonterminal more than k times (except that A occurs k + 1 times as chosen).
Of course, such a derivation (3.5) can be found. Then the length of x1 · · · xkwyk · · · y1

would be bounded by a constant r (= 2k·|N |+1).
We can choose p = max(r, q).

We still need one more notion. For a CF grammar G = (V, Σ,P, S) and a subset
Q ⊆ N = V \ Σ, by a derivation in Q we mean a derivation of G which uses all
nonterminals of Q, and only nonterminals of Q. We set

L(G; Q) = {w ∈ Σ∗ | w has a derivation in Q from S}.

Clearly,

L =
⋃

Q⊆N

L(G; Q). (3.6)

Theorem 3.14 (Parikh Theorem). Each CF language is letter equivalent to a regular
language.

3.2 Properties of CF languages 50

Proof. Let L = L(G) for a CNF grammar G = (V, Σ,P, S). Further let Q ⊆ N(= V \Σ).
Since the family of regular languages is closed under union, it follows from (3.6) that it
is enough to show that L(G; Q) is letter equivalent to a regular language.

Let k = |Q| and p the constant of Lemma 3.13 associated to G and k. We set

F = {w ∈ Σ∗ | |w| < p,w ∈ L(G; Q)}

and

T = {w ∈ Σ∗ | w = xy,A⇒∗G xAy using only nonterminals from Q, A ∈ Q, 1 ≤ |xy| < p}.

Then F and T are finite, so that FT ∗ is regular. Hence it is enough to prove

Claim. π(FT ∗) = π
(
L(G; Q)

)
.

Proof of Claim. π(FT ∗) ⊆ π
(
L(G; Q)

)
: We have to show that for z ∈ FT ∗, there

exists z′ ∈ L(G; Q) such that π(z) = π(z′). This is done by induction on i in FT ∗ =
⋃

i≥0 FT i.
i = 0: Then z ∈ F and so also z ∈ L(G; Q).
Induction step: Let z ∈ FT i. We write z = ft with f ∈ FT i−1 and t ∈ T . We find,

by induction hypothesis, an f ′ in L(G; Q) such that π(f) = π(f ′). Now, by the choice
of T , we have

t = xy and A ⇒∗ xAy for some A ∈ Q.

But f ′ ∈ L(G; Q) and A ∈ Q, so that we have the following derivation in Q

S ⇒∗ uAv ⇒∗ uwv = f ′.

Consequently, uxwyv has a derivation in Q, and since clearly π(uxwyv) = π(f ′t) =
π(ft) = π(z) we are done.

π
(
L(G; Q)

)
⊆ π(FT ∗): Let z ∈ L(G; Q). Again we find, by induction on |z|, z ′ ∈ FT ∗

such that π(z) = π(z′).
|z| < p: Then z ∈ F and we are done.
Induction step: Assume that |z| = n ≥ p. Now z has a derivation in Q: S ⇒∗ z

using exactly nonterminals from Q. By Lemma 3.13, we can write this in the form

S ⇒∗ uAv ⇒+ ux1Ay1v ⇒
+ . . .⇒+ ux1 · · · xkAyk · · · y1v

⇒+ ux1 · · · xkwyk · · · y1v = z,
(3.7)

where, for each i, 1 ≤ |xiyi| ≤ p. (Note that here we have used Lemma 3.13 not for the
word z, but for its derivation S ⇒∗ z, which is by the proof of Lemma 3.13 OK).

Now, (3.7) is a derivation in Q. So all k nonterminals appear in (3.7). For each of
the k− 1 nonterminals in Q \ {A} we pick one of the k + 2 steps of (3.7) containing this
nonterminal. There remains at least one step of the form

ux1 · · · xiAyi · · · y1v ⇒
+ ux1 · · · xi+1Ayi+1 · · · y1v,

which is not picked. By removing this we obtain a derivation in Q for the word z̄ =
ux1 · · · xixi+2 · · · xkwyk · · · yi+2yi · · · y1v ∈ Σ∗, with |z̄| < |z|. By induction hypothesis,
there exists a z̄′ in FT ∗ such that π(z̄) = π(z̄′). Set z′ = z̄′xiyi and we are done:
z′ ∈ FT ∗ and π(z) = π(z′).

3.2 Properties of CF languages 51

Since for words w,w′ ∈ a∗ we have: π(w) = π(w′) iff w = w′, we obtain

Corollary 3.15. Each CF language L ⊆ a∗ is regular.

Example 3.5. We claim that unary CF language, i.e. CF languages over {a}, are
ultimately periodic, i.e. of the form

{an1, . . . , ani} ∪ {ani+1 , . . . , ani+j}{ap}∗ for some i, j ≥ 0, (3.8)

where 0 ≤ n1 < n2 < · · · < ni+j and p ≥ 0. By previous corollary, it suffixes to prove
this for regular languages. Let L ⊆ a∗ be accepted by a complete DFA A. Then A is of
the form:

a
q

0
q

1
qt-1

. . .
aa a

q
1 qt

a

a

a

qt+1

qt+2

qt+p-1

(3.9)

Now, any choice of the final states gives a presentation of the form (3.8), and also
conversely any presentation of the form (3.8) yields a DFA of the form (3.9) accepting
the language.

Now, we turn to the decidability questions for CF languages. We consider the same
questions we did for regular languages.

Theorem 3.16. The membership, emptiness and finiteness problems are decidable for
CF languages (given by CF grammars).

Proof. Membership. Here a grammar G and a word w ∈ Σ∗ are given, and the algorithm
has to decide “w ∈ L(G)?”.

An algorithm: First change G to an equivalent GNF grammar G ′, by Theorem 3.4.
Then decide whether S → 1 is in G ′, if w = 1, or whether G ′ derives w in any derivation
of the length |w|, if w 6= 1.

This algorithm clearly works correctly, but is very unefficient. Indeed, the transfor-
mation G → G ′ is not easy, and even worse there may exist k|w| leftmost derivations for
words of length |w|, where k is the number of productions in G ′.

Emptiness. Clearly L(G) 6= ∅ iff ∃w ∈ Σ∗ : S ⇒∗G w iff S is terminating. The last
property can be checked by a construction in the proof of Theorem 3.1.

Finiteness (or infiniteness). An algorithm:

1) Find for G an equivalent CNF grammar G ′;

2) Find for G ′ an equivalent reduced grammar G ′′;

3) Check whether G ′′ contains a nonterminal A satisfying

A ⇒∗G′′ uAv for u, v ∈ V ∗ and uv 6= 1, (3.10)

and if “yes”, output “L(G) is not finite”, and otherwise “L(G) is finite”.

3.2 Properties of CF languages 52

Parts 1) and 2) can be done by Theorems 3.2 and 3.1, respectively. Condition (3.10),
in turn, can be tested by a construction in the proof of Theorem 3.1.

The correctness of the algorithm is seen as follows: If there exist an A satisfying
(3.10), then L(G) is infinite, since G ′′ is reduced uv cannot be erased (since G ′′ is in
CNF), and we can pump (3.10) arbitrarily many times. On the other hand, if no A
satisfying (3.10) exists, then, since G is in CNF, the paths in derivation trees are shorter
than |N |. Hence, L(G) is finite.

Remark 3.5. Contrary to Theorem 3.16 many other problems for CF languages are
algorithmically undecidable. Examples of such problems are:

Equivalence problem : L(G)
?
= L(G ′).

Ambiguity problem : Is a given CF grammar ambiguous?

Universality problem : L(G)
?
= Σ∗.

Later we shall have tools to show such results.

We conclude this section with a more practical solution for the membership problem.

Theorem 3.17 (Cocke–Younger–Kasami -algorithm). The membership problem
for CF languages can be solved in cubic time, i.e. in O(|w|3).

Proof. First we transform a grammar generating L into a CNF grammar G = (V, Σ,P, S).
(This requires only a constant time in terms of |w|!)

We are given w = a1 · · · an, with ai ∈ Σ. We denote by αij the factor of w starting
at the position i and of length j. Therefore αij = ai · · · ai+j−1. So if we let j = 1, . . . , n,
then i = 1, . . . n− j + 1. The basic idea is to find all nonterminals A satisfying

A ⇒∗G αij. (3.11)

This is done inductively on j and keeping a list of sets of nonterminals computed earlier.
In more details, we build the upper left half of the matrix, where entry (i, j) consists of
exactly those A´s satisfying (3.11). Hence, the question “w ∈ L(G)?” can be answered
by checking whether S is in the entry (1, n).

The construction of the matrix is illustrated below:
The first row is easy to fill. Since G is in CNF, A is in (i, 1) iff A → ai ∈ P. Now,

assuming that the j − 1 first rows are filled, the next one is filled as follows:

A is in (i, j) iff

A ⇒∗ αij iff (since G is in CNF)

A −→ BC ∈ P and ∃k ∈ {1, . . . , j − 1} : B ⇒∗ αik and C ⇒∗ αi+k,j−k iff

A −→ BC ∈ P and ∃k ∈ {1, . . . , j − 1} : B in (i, k) and C in (i + k, j − k).

The correctness of the algorithm follows directly from the construction. The com-
plexity of the algorithm is estimated as follows:

– We have to compute the value of O(n2) entries;

– Each value can be computed by comparing at most n pairs of earlier computed
entries;

3.3 Pushdown automata 53

a1 a2 a3 · · · ak · · · an

i −→ l

j


y

i, j

←− Test S ∈ (1, n) ?

•

•

•

•

•

• •

•

•

•

•

•

Lines • • show the en-
tries needed to be checked in
order to fill the entry (i, j).

Arrow ←→ show how entries
(i, 1) are filled.

– Comparing two entries in the above can be done in a constant time on n.

Hence, the complexity is O(n3).

Remark 3.6. There are methods to improve the above algorithm, but no algorithm
with complexity O(n2) is known for the problem.

Remark 3.7. The above algorithm can be used to find a derivation tree for w also in
time O(n3).

Remark 3.8. The method used to construct the above algorithm is that of the dynam-
ical programming : a problem is solved by solving smaller instances and keeping a list of
their solutions.

3.3 Pushdown automata

In this section we define a family of automata — pushdown automata — which charac-
terizes the family of CF languages. These automata are generalizations of FA such that
in addition to a finite memory in states, they have an additional, potentially infinite,
memory, which however is of a very special type, so called LIFO–type (last–in–first–out).
Moreover, these devices are nondeterministic and capable of reading empty word. Here
the deterministic variant (dpda) is strictly less powerful than the general model (pda).

Definition 3.8. Pushdown automaton M, pda for short, is a seventuple

M = (Q, Σ, Γ, δ, q0, z0, F),

where

3.3 Pushdown automata 54

(i) Q is a finite set of states,

(ii) Σ is a finite input alphabet,

(iii) Γ is a finite stack alphabet,

(iv) δ is a transition function Q×(Σ∪{1})×Γ→ 2Q×Γ∗

,

(v) q0 ∈ Q is the initial state,

(vi) z0 ∈ Γ is the initial stack symbol,

(vii) F ⊆ Q is the set of final states.

I N P U T · · ·

−→

read
only
head

q0 q1

qf

. . .

∧

y

S

T

A

C

K
...

read and
write head

As in the case of an FA, a pda can be illustrated as shown in the figure above.
Transitions ofM are of the form

(p, α, z, q, γ) ∈ Q× (Σ ∪ {1})× Γ×Q× Γ∗ (3.12)

and are interpreted as follows: “When in state p, reading α and z is the topmost symbol
in the stack, then M can move to state q, replace z by γ, and stay in the same square
of the input tape or move one step to the right depending on whether α = 1 or α ∈ Σ”.

For a triple (p, α, z) there may be several pairs (q, γ) such that (p, α, z, q, γ) is a
transition — henceM is nondeterministic. Also the case α = 1 is allowed — henceM
may have 1-transitions.

A configuration of M during a computation, its instantaneous description, ID for
short, is defined as a triple (q, w, γ) ∈ Q×Σ∗× Γ∗, corresponding to a current state, so
far unread part of the input and the contents of the stack.

Definition 3.9. On the set of ID´s we define a relation `M as follows:

(p, αw, zβ) `M (q, w, γβ) if (q, γ) ∈ δ(p, α, z).

By `∗M we mean the reflexive and transitive closure of `M. If ID `M ID’, we say that
M derives directly ID’ from ID, corresponding a one step computation. Consequently,
`i
M means an i step computation according to M. The initial configuration of M is

(q0, w, z0).

Definition 3.10. A language can be associated with a pdaM in a number of different
ways. A language accepted by M (with final states) is

L(M) = {w ∈ Σ∗ | (q0, w, z0) `
∗
M (q, 1, γ) with q ∈ F, γ ∈ Γ∗}.

A language accepted byM with empty stack (resp. with empty stack and final states) is

N(M) = {w ∈ Σ∗ | (q0, w, z0) `
∗
M (q, 1, 1) with q ∈ Q}

(resp. T (M) = {w ∈ Σ∗ | (q0, w, z0) `
∗
M (q, 1, 1) with q ∈ F}).

Remark 3.9. All three models of the acceptance define exactly the same family of
languages, namely the family of CF languages, as we shall see. If the acceptance is
not specified in details, we mean the acceptance with final states. This makes pda´s
natural extensions of FA´s. Of course, the acceptance with the empty stack and final
states would be mathematically nicest — however, it is not so suitable when showing
that particular languages are CF.

3.3 Pushdown automata 55

Example 3.6. Let us search for a pda for the language {anbn | n ≥ 0} = L. The idea is
clear: pda counts the number of a´s in the stack, so that it can accept when the number
of b´s equal to that of a´s. More formally, letM = ({q0, qa, qb, qf}, {a, b}, {z0, a, b}, δ, q0,
z0, {qf}) with the transitions:

(q0, 1, z0) −→ (qf , 1) (accepts 1)

(q0, a, z0) −→ (qa, az0)

(qa, a, a) −→ (qa, aa)

(qa, b, a) −→ (qb, 1)

(qb, b, a) −→ (qb, 1)

(qb, 1, z0) −→ (qf , 1).

Clearly, L(M) = N(M) = T (M) = L.

Example 3.7. The language
{
wcwR | w ∈ {a, b}+

}
is accepted by a pda M having

transitions:
(q0, x, z0) −→ (q0, xz0) for x ∈ {a, b},

(q0, x, y) −→ (q0, xy) for x, y ∈ {a, b},

(q0, c, x) −→ (q1, x) for x ∈ {a, b},

(q1, x, x) −→ (q1, 1) for x ∈ {a, b},

(q1, 1, z0) −→ (qf , 1),

with q0 and qf the initial and final state, respectively. Again L(M) = N(M) = T (M).
That M works correctly is clear: First when reading w it is pushed to the stack, and
when detecting c in the inputM starts to pop symbols from the stack, and at the same
time compares that the rest of the input word is exactly the reverse of the word pushed
to the stack.

If we change the third transition (schemata) by

(q0, x, x) −→ (q1, 1) for x ∈ {a, b},

we obtain pda M′ accepting the language L′ =
{
wwR | w ∈ {a, b}∗

}
. The argument

is the same. Only in M we detect the middle of the input, while in M′ we guess it,
and then confirm that the guess was correct. M′ is clearly nondeterministic, while M
is deterministic in the sense we define precisely later.

Next we show that all three different models of the acceptance lead to the same
family of languages.

Lemma 3.18. For each pda M there exists a pda M′ such that L(M) = N(M′).

Proof. LetM = (Q, Σ, Γ, δ, q0, z0, F). We have to construct a pda M′ such that

– M′ simulatesM, and

– wheneverM enters to a final state, thenM′ empties its stack (and otherwise the
stack ofM′ is nonempty).

We setM′ = (Q ∪ {qe, q
′
0}, Σ, Γ ∪ {x0}, δ′, q′0, x0,−) with the transitions:

3.3 Pushdown automata 56

(i) δ′(q′0, 1, x0) = (q0, z0x0),

(ii) δ′(q, a, z) = δ(q, a, z),

(iii) δ′(q, 1, z) = (qe, 1) for q ∈ F, z ∈ Γ ∪ {x0},

(iv) δ′(qe, 1, z) = (qe, 1) z ∈ Γ ∪ {x0}.

Note that the set of final states ofM′ need not be defined.

Claim. L(M) = N(M′).

Proof of Claim: L(M) ⊆ N(M′). Let w ∈ L(M), i.e.

(q0, w, z0) `
∗
M (q, 1, γ) for some q ∈ F and γ ∈ Γ∗.

Then according toM′ we have:

(q′0, w, x0) `M′ (q0, w, z0x0) `
∗
M′ (q, 1, γx0) `M′ (qe, 1, γ

′) `∗M′ (qe, 1, 1),

where γ ′ = 1 if γ = 1, and otherwise γ ′ = c−1γx0, where c is the first symbol of γ.
It follows that w ∈ N(M′).
N(M′) ⊆ L(M). Let w ∈ N(M′), i.e. (q′0, w, x0) `∗M′ (q, 1, 1) for some q. The

above computation starts with a rule (i) which leaves the symbol x0 to the bottom of
the stack. Since the computation is accepting it has to be removed, and this can be
done only by rules of (iii) or (iv), that is in the state qe. In order to enter to state qe,
M′ has to reach a final state of M. None of the rules (i), (iii) or (iv) consumes any
input symbol. So the computation from q0 to a final state ofM according toM′ is an
accepting computation of w inM. Hence w ∈ L(M).

Lemma 3.19. For each pda M there exists a pda M′ such that N(M) = L(M′).

Proof. Let M = (Q, Σ, Γ, δ, q0, z0,−) be a pda. Now we have to construct a pda M′

such that

– M′ simulatesM, and

– wheneverM empties the stack (and stops), thenM′ moves to its final state (and
this is the only way to go to a final state).

We define M′ = (Q ∪ {q′0, qf}, Σ, Γ ∪ {x0}, δ′, q′0, x0, {qf}), where δ′ is as follows:

(i) δ′(q′0, 1, x0) = (q0, z0x0),

(ii) δ′(q, a, z) = δ(q, a, z),

(iii) δ′(q, 1, x0) = (qf , 1).

Rule (i) leads from the initial ID ofM′ to that ofM, with the additional property
that at the bottom of the stack is x0. Then rules (ii) allows M′ to simulate M, and if
M makes the stack empty, then and only then, (iii) becomes applicable allowingM′ to
enter to its final state without reading any symbols.

The above clearly shows that N(M) ⊆ L(M′). But since the above was the only
way to reach a final state also L(M′) ⊆ N(M).

3.3 Pushdown automata 57

Theorem 3.20. The three families of languages accepted by pda´s with

(i) final states;

(ii) empty stack; or

(iii) final states and empty stack,

coincide.

Proof. The equivalence of (i) and (ii) follows from Lemmas 3.18 and 3.19. The equiva-
lence of (ii) and (iii) is easy and left as an exercise.

Next we prove the main result of this section.

Theorem 3.21. A language L ⊆ Σ∗ is CF iff it is accepted by a pda.

Proof. By Theorem 3.20 we may use the acceptance with the empty stack.
⇒: Let L ⊆ Σ∗ be CF. It is enough to prove the implication in the case 1 6∈ L, since

we can easily construct — by introducing a new initial state — from a pda for L \ {1}
a pda for L.

We assume that L is generated by GNF grammar G = (V, Σ,P, S). We define a pda
M = ({q}, Σ, N, δ, q, S, ∅), where

δ(q, a, A) = (q, γ) iff A −→ aγ ∈ P.

The basic idea is that M simulates leftmost derivations of G by remembering the se-
quences of nonterminals in sentential forms of the derivations of G in its stack. More
formally, we claim, that

S ⇒∗G xγ with x ∈ Σ∗, γ ∈ N ∗ (3.13)

is a leftmost derivation of G iff

(q, x, S) `∗M (q, 1, γ).

Assume first that (q, x, S) `i
M (q, 1, γ). We prove by induction on i, that S ⇒∗G xγ.

The case i = 0 is clear: x = 1, γ = S. For the induction step we write x = ya and

(q, x, S) `i−1 (q, a, β) ` (q, 1, γ). (3.14)

Now (q, y, S) `i−1 (q, 1, β) so that, by the induction hypothesis, in G S ⇒∗ yβ. By
(3.14) and the construction ofM, there must be A in N such that β = Aβ ′, A→ aη is
in P and γ = ηβ ′. Consequently,

S ⇒∗G yAβ′ ⇒G yaηβ ′ = xγ,

as required.
Second assume that S ⇒i

G xγ is a leftmost derivation with x ∈ Σ∗ and γ ∈ N ∗. We
prove, by induction on i, that (q, x, S) `∗M (q, γ). Again the case i = 0 is trivial. For
the induction step we write x = ya and

S ⇒i−1
G yAβ′ ⇒G yaηβ ′ = xγ with a ∈ Σ.

3.3 Pushdown automata 58

By the induction hypothesis

(q, y, S) `∗M (q, 1, Aβ ′),

and so also
(q, ya, S) `∗M (q, a, Aβ ′).

Now, since A→ aη ∈ P we obtain from the construction ofM that

(q, x, S) `∗M (q, a, Aβ ′) `M (q, 1, ηβ ′) = (q, 1, γ)

as required.
To conclude, we note that (3.13) implies, when choosing γ = 1, that L(G) = N(M),

so that L is accepted by a pda with the empty stack.
⇐: Let M = (Q, Σ, Γ, δ, q0, z0, ∅) be a pda such that L = N(M). We construct a

CF grammar G = (V, Σ,P, S), where

V = {S} ∪ (Q× Γ×Q) ∪ Σ,

and P consists of productions:

(i) S −→ [q0, z0, q] for q ∈ Q,

(ii) [q, A, qm+1] −→ a[q1, B1, q2][q2, B2, q3] · · · [qm, Bm, qm+1] for q, q1, . . . , qm+1 ∈ Q,
a ∈ Σ ∪ {1} and A,B1, . . . , Bm ∈ Γ such that (q1, B1 · · ·Bm) ∈ δ(q, a, A).

In (ii), if m = 0, then the production is of the form [q, A, q1]→ a.
The idea of the above construction is as follows. A nonterminal [p,A, q] in G is

eliminated in a leftmost derivation, and at the same time a terminal word x is produced
iff x causes inM a computation from p to q popping the nonterminal A from the stack,
or more precisely make the square occupied by A empty for the first time.

More formally, we prove for all q, p ∈ Q and A ∈ Γ that

[q, A, p] ⇒∗G x ∈ Σ∗ iff (q, x, A) `∗M (p, 1, 1). (3.15)

This is done by induction on the number i of steps in a derivation of G or in a computation
ofM.

I. First we show that

if (q, x, A) `i
M (p, 1, 1), then [q, A, p] ⇒∗G x.

i = 1: Now (p, 1) is in δ(q, x, A), so that G contains a production [q, A, p]→ x.
Induction step: Consider a computation ofM of length i, and write it in the form

(q, ay, A) ` (q1, y, B1 · · ·Bn) `i−1 (p, 1, 1), (3.16)

with x = ay, a ∈ Σ ∪ {1}. Now, y has a factorization

y = y1 · · · yn,

where yj has the effect of popping Bj from a stack in the sense that during the shown
i− 1 steps on the computation the square originally filled by Bj is made empty for the
first time when reading yj. Of course, this popping can be done after a long sequence
of moves, where the stack can be longer than n − j, but no symbols Bj+1, . . . , Bn are

3.3 Pushdown automata 59

touched when reading yj. Some yj´s may be empty, or may contain “at the end several
occurrences of the empty word”.

More precisely yj´s are defined such that for some states q2, . . . , qn+1, with qn+1 = p,
we have

(qj, yj , Bj) `
∗
M (qj+1, 1, 1).

All of these computations are shorter than i, so that the induction hypothesis applies
yielding

[qj, Bj , qj+1] ⇒
∗
G yj for 1 ≤ j ≤ n.

Now, by the construction of G, we conclude from the first step of (3.16) that

[q, A, p] ⇒G a[q1, B1, q2] · · · [qn, Bn, qn+1],

so that combining these derivations of G we obtain

[q, A, p] ⇒∗G ay1 · · · yn = ay = x,

as required.
II. Second we show that

if [q, A, p] ⇒i
G x ∈ Σ∗, then (q, x, A) `∗M (p, 1, 1).

This again is proved by induction on i.
i = 1: Now [q, A, p]→ x must be a production so that (p, 1) ∈ δ(q, x, A).
Induction step: consider a derivation of G of the length i of a terminal word x:

[q, A, p] ⇒G a[q1, B1, q2] · · · [qn, Bn, qn+1] ⇒
i−1
G x, (3.17)

where qn+1 = p. Then we can write x = ax1 · · · xn, where

[qj, Bj , qj+1] ⇒
∗
G xj for 1 ≤ j ≤ n.

Moreover, each of these derivations are shorter than i, so that the induction hypothesis
applies yielding

(qj, xj, Bj) `
∗
M (qj+1, 1, 1) for 1 ≤ j ≤ n.

In these computations we can add Bj+1 · · ·Bn to the bottom of the stack:

(qj, xj, BjBj+1 · · ·Bn) `∗M (qj+1, 1, Bj+1 · · ·Bn) for i ≤ j ≤ n.

Now, from the first step of (3.17) we conclude that

(q, x, A) `M (q1, x1 · · · xn, B1 · · ·Bn),

and therefore combining the above computations we obtain

(q, x, A) `∗M (p, 1, 1),

as required.
By now, we have established (3.15). If we choose q = q0 and A = z0, we obtain

[q0, z0, p] ⇒∗G x ∈ Σ∗ iff (q0, x, z0) `
∗
M (p, 1, 1).

This together with the productions S → [q0, z0, p], for some p ∈ Q, implies that

S ⇒∗G x ∈ Σ∗ iff (q0, x, z0) `
∗
M (p, 1, 1) for some p ∈ Q.

Therefore L(G) = N(M), as was to be proved.

3.3 Pushdown automata 60

We obtain from the first part of the above proof:

Corollary 3.22. Each CF language is accepted with empty stack by a pda having only
one state.

Remark 3.10. Above corollary says that states are actually useless in pda´s, if the ac-
ceptance is with empty stack. This result is useful for certain theoretical considerations.
However, in order to show that certain languages are CF it is very useful to have final
states.

Theorem 3.21 can be used to show further closure properties of the family of CF
languages.

Theorem 3.23. For each CF language L ⊆ Σ∗ and regular language R ⊆ Σ∗ the
language L ∩R is CF.

Proof. An intuitive reason for the result is clear: a finite memory of an FA added to a
pushdown memory + a finite memory of a pda is still a pushdown memory + a finite
memory. This is also the idea of the proof: FA A and pda M are run simultaneously
on inputs which are accepted iff both A andM accept.

Formally, let R = L(A) for DFA A = (QA, Σ, δA, q0, FA) and L = L(M) for pda
M = (QM, Σ, Γ, δM, p0, z0, FM). Define

M∩ =
(
QA ×QM, Σ, Γ, δ, (q0, p0), z0, FA × FM

)
,

where δ is defined as
(
(p′, q′), γ

)
∈ δ
(
(p, q), a, z

)
iff δA(p, a) = p′ and (q′, γ) ∈ δM(q, a, z).

Of course, a above is in Σ ∪ {1}. If a = 1, then by the definition of δA, δA(p, a) = p.
We claim that for any γ ∈ Γ∗, w ∈ Σ∗ and (p, q) ∈ QA ×QM we have

(
(p0, q0), w, z0

)
`i
M∩

(
(p, q), 1, γ

)

iff
δA(p0, w) = p and (q0, w, z0) `

i
M (q, 1, γ).

This follows directly from the construction (and can be formally proved by induction).
Now, Theorem follows from the above equivalence.

Theorem 3.24. Let L ⊆ ∆∗ be CF and h : Σ∗ → ∆∗ a morphism. Then h−1(L) ⊆ Σ∗

is CF.

Proof. Let L = L(M) for pda M = (Q, ∆, Γ, δ, q0, z0, F). We construct pda M′ such
that:

– On input a (or w) M′ behaves asM does on h(a) (or h(w)).

A problem here is that a computation (p, h(a), z) `∗M (q, 1, γ) might contain unbound-
edly long γ — and hence cannot be simulated by M′ on one (or a fixed finite number
of) step(s). A solution to this is that M′ remembers in its states (in a “buffer” of a
finite length) the suffixes of h(a)´s.

Formally,M′ =
(
Q′, Σ ∪∆, Γ, δ′, (q0, 1), z0, F × {1}

)
, where

Q′ = {(q, α) | q ∈ Q,α is a nonempty suffix of h(a) for some a ∈ Σ},

and δ′ is defined as:

3.3 Pushdown automata 61

(i)
(
(p, α), γ

)
∈ δ′

(
(q, α), 1, z

)
, if (p, γ) ∈ δ(q, 1, z);

(ii)
(
(p, α), γ

)
∈ δ′

(
(q, aα), 1, z

)
, if (p, γ) ∈ δ(q, a, z) for a ∈ ∆; and

(iii)
((

q, h(a)
)
, z
)

∈ δ′
(
(q, 1), a, z

)
for all a ∈ Σ, z ∈ Γ.

The meaning of (i)–(iii) is in that order: “Simulates a 1-move ofM”; “Simulates a move
ofM which reads a ∈ ∆”; and “Loads a buffer by h(a)”. In the first move the buffer is
unchanged, while in the second move it is shortened by one.

We claim that L(M′) = h−1(L).
I. h−1(L) ⊆ L(M′). Now, if

(
q, h(a), β

)
`∗M (p, 1, β ′), then one application of (iii)

followed by several applications of (i) and (ii) shows that

(
(q, 1), a, β

)
`∗M′

(
(p, 1), 1, β ′

)
.

Consequently,

if
(
q0, h(w), z0

)
`∗M (p, 1, γ), then

(
(q0, 1), w, z0

)
`∗M′

(
(p, 1), 1, γ

)
,

proving the inclusion h−1(L) ⊆ L(M′).
II. L(M′) ⊆ h−1(L). Let w = a1 · · · an, with ai ∈ Σ, be accepted by M′. By the

construction, M′ can read a symbol only in the states (q, 1), that is when the buffer is
empty. Consequently, the accepting computation of w in M′ is of the form

(
(q0, 1), a1 · · · an, z0

)
`∗M′

(
(p1, 1), a1 · · · an, γ1

)

`∗M′

((
p1, h(a1)

)
, a2 · · · an, γ1

)

`∗M′

(
(p2, 1), a2 · · · an, γ2

)

`∗M′

((
p2, h(a2)

)
, a3 · · · an, γ2

)

...

`∗M′

((
pn, h(an)

)
, 1, γn

)

`∗M′

(
(pn+1, 1), 1, γn+1

)
,

where pn+1 ∈ F . In above, transitions from state (pi, 1) to state
(
pi, h(ai)

)
is by (iii),

while all the other transitions are by rules in (i) and (ii). The latter ones has counterparts
inM, so that in M we must have

(q0, 1, z0) `
∗
M (p1, 1, γ1) and (pi, h(ai), γi) `

∗
M (pi+1, 1, γi+1), ∀i.

Consequently,

(
q0, h(a1 · · · an), z0

)
`∗ (pn+1, 1, γn+1), with pn+1 ∈ F.

This means that h(w) ∈ L(M), and therefore w ∈ h−1(L).

From Nivat´s Theorem (or its Corollary 2.26) and Theorems 3.6, 3.23 and 3.24 we
obtain the following useful closure property.

3.4 Restrictions and extensions 62

Theorem 3.25. The family of CF languages is closed under rational transductions, i.e.
for each CF language L ⊆ Σ∗ and rational transduction T : Σ∗ → ∆∗, the language
T (L) is CF.

Example 3.8. For each CF language L the languages

F (L) = {w | ∃u, v ∈ Σ∗ : uwv ∈ L}
and

F2(L) = {ww′ | ∃u, v, z ∈ Σ∗ : uwvw′z ∈ L}

are CF. Indeed they are images of L under the finite transducers

21
a , a a , a

3

�
, 1

�
a � a

�
, 1 � , 1

21
a , a

�
, 1

�
a

�
, 1

and .

3.4 Restrictions and extensions

In this section we consider briefly some subfamilies of the family of CF languages, as well
as some extensions. A particularly interesting subfamily is the family of deterministic
CF languages. Its importance follows from the fact that in most applications, when
the theory of CF languages is applied to programming languages, it suffixes to consider
deterministic CF languages. These are defined via a deterministic version of pda.

Definition 3.11. Pushdown automaton M = (Q, Σ, Γ, δ, q0, z0, F) is deterministic,
dpda for short, if the transition relation satisfies:

(i) |δ(p, a, z)| ≤ 1 for each p ∈ Q, a ∈ Σ ∪ {1} and z ∈ Γ, and

(ii) if δ(p, 1, z) 6= ∅, then, for all a ∈ Σ, δ(p, a, z) = ∅.

Further L ⊆ Σ∗ is deterministic CF language, that is in Det, iff there exists a dpda M
such that L = L(M), that is, is accepted by a dpda with final states.

It follows that in a dpda each input word has at most one computation (either
accepting or not). Hence, dpda´s are unambiguous. Note also that, it is not natural
to define the acceptance with the empty stack. If this would have been done, then in
a deterministic CF language no proper prefix of an accepted word would be accepted
(since the computation always halts if the stack is empty). In particular, Lemma 3.18
on page 55 does not hold for dpda´s. On the other hand, the construction of Lemma
3.19 on page 56 preserves the determinism.

Note also that in Example 3.7 on page 55 the first pda is deterministic, while the
second is not.

3.4 Restrictions and extensions 63

Example 3.9. Language {anbncm | n,m ≥ 1} is in Det. Indeed, it is accepted by a
dpda:

δ(q0, a, z0) = (q0, az0)

δ(q0, a, a) = (q0, aa)

δ(q0, b, a) = (q1, 1)

δ(q1, b, a) = (q1, 1)

δ(q1, c, z0) = (qf , z0)

δ(qf , c, z0) = (qf , z0),

with qf final. Hence, as in the case of CF languages, Det is not closed under intersection.

In general, the closure properties of Det are quite different from those of CF :

Theorem 3.26. Det is closed under inverse morphisms and intersection with regular
language.

Proof. The constructions of the proofs of Theorems 3.24 and 3.25 preserve the deter-
minism.

In the next two propositions we state some differences of Det and CF with respect
to closure properties.

Proposition 3.27. Det is closed under complementation.

Idea of proof. Make a dpda complete (as in the case of an FA) and change the final and
nonfinal states. However, this is rather complicated (cf. Harrison), in general. Only if a
dpda does not contain 1-transitions, then this can be done easily by introducing a new
garbage state.

Example 3.10. Language L = {anbmck | n = m or m = k} is not in Det. Suppose the
contrary. Then

L′ = (Σ∗ \ L) ∩ a∗b∗c∗ = {anbmck | n 6= m and m 6= k}

would be CF by Proposition 3.27 and Theorem 3.24. However, this is not the case by
Iteration Theorem: Pump the word

am+m!bmcm+m!,

where b´s are marked and m is the constant of the theorem. Details are left as an
exercise.

Proposition 3.28. Det is not closed under any rational operation or morphisms.

Proof. Based on Example 3.10. Indeed, define L1 = {anbmck | n = m} and L2 =
{anbmck | m = k}. Then L1 and L2 are in Det, as in Example 3.9, while

L = L1 ∪ L2 = {anbmck | n = m or m = k}

is not. Hence, the nonclosure under union follows.

3.4 Restrictions and extensions 64

If Det would be closed under catenation, then

d∗(dL1 ∪ L2) ∩ da∗b∗c∗ = dL1 ∪ dL2

would be in Det, and so would be L1 ∪ L2. Hence, the nonclosure under catenation is
shown. The nonclosure under iteration is similar:

(
{d} ∪ (dL1 ∪ L2)

)∗
∩ da∗b∗c∗ = {d} ∪ dL1 ∪ dL2.

Finally, the nonclosure under morphisms follows since dL1 ∪ eL2 ∈ Det.

Next we summarize our knowledge on hierarchy results of subfamilies of context–free
languages.

Theorem 3.29. We have

Reg

Det

Lin ���
��

� �

and moreover the families Lin and Det are incomparable.

Proof. All the inclusions are clear by definitions. They are proper by languages L1 =
{anbn | n ≥ 0}, L2 =

{
w ∈ {a, b}∗ | |w|a = |w|b

}
and L3 = {anbmck | n = m or m = k}.

Indeed, L1 is not regular, L2 is not linear and L3 is not deterministic, while L1 and L2

are deterministic and L1 and L3 are linear, cf. Example 3.10 and Exercises. Therefore
L3 ∈ Lin \Det and L2 ∈ Det \Lin showing the incomparability.

Note that our proof is based on Example 3.10 and therefore on Proposition 3.27.

By Proposition 3.27 (or more precisely by its constructive proof) we obtain some
new decidability results:

Theorem 3.30. It is decidable, whether for a given regular language R and deterministic
CF language L (i) L = R and (ii) R ⊆ L.

Proof. Now

L = R iff L1 =
(
L ∩ (Σ∗ \R)

)
∪
(
R ∩ (Σ∗ \ L)

)
= ∅,

where L1 is an effectively findable CF language by Proposition 3.27 and Theorems 3.26
and 3.8. Hence, the problem (i) is reduced to Theorem 3.16.

Problem (ii), in turn, follows from the identity R ⊆ L iff L ∩ Σ∗ \R = ∅.

Remark 3.11. Some problems, as we shall see later, remain undecidable for the family
Det. On the other hand, the equivalence problem of deterministic CF languages is often
referred to as the most important problem of formal languages (which seems to have
been solved 2001).

Remark 3.12. There exists a grammatical characterization of the family Det, using
so–called LR(k)-grammars. These are very important on compiler constructions.

As in the case of finite automata we can extend pda´s by adding outputs:

3.4 Restrictions and extensions 65

Definition 3.12. A pushdown transducer P, pdt for short, is an 8-tuple

P = (Q, Σ, ∆, Γ, δ, q0, z0, F),

where ∆ is the output alphabet and δ ⊆ Q× (Σ ∪ {1})× Γ×Q× (∆ ∪ {1})× Γ∗ is a
finite set of transitions of the form

(p, u, z) −→ (q, v, γ),

where v is the output and the other components are as in a pda.

The notions of a pda, such as ID, are extended to pdt´s in a natural way. In
particular pdt P computes a relation R(P) : Σ∗ → ∆∗ as follows:

R(P) = {(u, v) ∈ Σ∗ ×∆∗ | (q0, u, 1, z0) `
∗
P (q, 1, v, γ), q ∈ F, γ ∈ Γ∗}.

Hence, in ID´s the second component tells the input so far read and the third one the
output so far produced. Note also that we have chosen the acceptance with final states.
Relations computed by pdt´s are called algebraic.

Example 3.11. The relation (or transduction) defined by

(ab)n 7−→ anbn

x 7−→ ∅ otherwise

can be computed by a pdt with transitions:

(q0, a, z0) −→ (qb, a, z0) (qa, 1, b) −→ (qt, b, 1)

(qb, b, z0) −→ (qa, 1, bz0) (qt, 1, b) −→ (qt, b, 1)

(qa, a, b) −→ (qb, a, b) (qt, 1, z0) −→ (qf , 1, 1)

(qb, b, b) −→ (qa, 1, bb) with qf final.

Nivat Theorem has a counterpart here.

Theorem 3.31. A relation ρ ⊆ Σ∗ ×∆∗ is algebraic iff it is of the form

ρ =
{(

h(w), g(w)
)
| w ∈ L

}
, (3.18)

where h : Θ∗ → Σ∗ and g : Θ∗ → ∆∗ are morphisms and L ⊆ Θ∗ is CF.

Proof. ⇒: Let ρ = R(P). We first note that the set of accepting computations
Comp(P), i.e. those sequences of transitions of P which are accepting, is a CF lan-
guage. Indeed, this is accepted by a pdaMP with the transitions
(
p, (p, u, z)→ (q, v, γ), z

)
−→ (q, γ) inMP iff (p, u, z) −→ (q, v, γ) in P.

Now, clearly L(MP) = Comp(P). Hence Θ can be chosen to be the set of transitions
of P and morphisms h and g are defined to pick up u and v, respectively. Note, that in
fact Comp(P) is deterministic.
⇐: For a pda M accepting L ⊆ Θ∗ and morphisms h : Θ∗ → Σ∗ and g : Θ∗ → ∆∗

satisfying (3.18), we can define a pdt P by the condition
(
p, h(u), z

)
−→

(
q, g(u), γ

)
in P iff (p, u, z) −→ (q, γ) inM.

Note that here on the left hand side we have a computation and not a single transition.
Now clearly R(P) = ρ.

3.4 Restrictions and extensions 66

As in the case of finite transducers we can rewrite Theorem 3.31 as

Corollary 3.32. A relation ρ ⊆ Σ∗ ×∆∗ is algebraic iff it can be written in the form

ρ = g ◦
⋂

L ◦ h−1,

where h and g are morphisms and L is a CF language.

Now, from the closure properties of CF languages we obtain a result which should
be compared to Theorem 3.25.

Theorem 3.33. If R ∈ Reg and P is a pdt, then P(R) is CF.

Proof. By above Corollary 3.32 P(R) = g
(
h−1(R) ∩ L

)
for some CF language L.

As our last example of this section we consider a generalization of a pda which can
accept the language {anbncn | n ≥ 0}, for example.

Example 3.12. Let us call an extension of a pda a (1-way) stack automaton if it is like
a pda in the sense that it consists of finite memory and one LIFO memory, which can
be used by transitions of the form:

(i) a symbol can be pushed to the topmost square;

(ii) a symbol can be popped from the topmost square;

(iii) head of the stack can move one step to down or
up without writing anything to the stack.

Moreover, in each step a symbol or empty word is read
in the input tape and the state of the machine is allowed
to change. Further endmarkers are used to identify the
ends of the input.

I N P U T · · ·

−→

read
only
head

q0 q1

qf

. . .

∧

>

<

↑
↓

S

T

A

C

K

...

read and
write head

Can
write
only
here!

Now, it is easy to describe a deterministic stack automaton SA accepting the language
{anbncn | n ≥ 0}, or more precisely {$anbncn# | n ≥ 0}. When reading a´s it pushes
those to the stack and stays in the topmost square. Then when encountering b SA
moves to a nonwriting state and moves one step down in the stack when reading each
b. When detecting the bottom marker z0 of the stack the machine is able to continue
iff it at the same time reads c. Now, when reading c´s the head in the stack moves one
step upwards in each step and it accepts iff it reaches the topmost square at the same
time, when the right endmarker of the input tape is scanned. Then and only then the
machine enters to an accepting state.

Chapter 4

Context–sensitive languages

In this short chapter we consider the third family of language in Chomsky hierarchy,
namely the family of context–sensitive languages, CS in short. These are generated by
context–sensitive grammars, cf. pages 6–7, where the productions are of the form

αAγ −→ αβγ with A ∈ N, β ∈ V + and α, γ ∈ V ∗, (4.1)

or
S −→ 1,

where S is the start symbol, and if production S → 1 appears in the grammar, then S
does not occur on the right hand side of the productions. Production of the form (4.1)
are called context dependent productions.

Productions of (4.1) are also length increasing in the sense that the length of the
right hand side is at least as large as that of the left hand side. Grammars having only
length increasing productions are called length increasing. From this property we derive
our first result.

Theorem 4.1. The membership problem for CS languages is decidable.

Proof. Let G = (V, Σ, S,P) be a CS grammar and w ∈ Σ∗. We have to construct an
algorithm to decide whether “w ∈ L(G)?”. The algorithm we present is very trivial (and
inefficient):

(i) If w = 1, check whether S → 1 ∈ P, and if so output “yes”;

(ii) Otherwise construct all nonrepetative sequences of words w0, w1, . . . , wt over V
such that w = wt and |wi+1| ≥ |wi| for i = 0, . . . , t− 1, and decide whether

S = w0 ⇒G w1 ⇒G . . . ⇒G wi ⇒G . . . ⇒G wt = w. (4.2)

If the sequence satisfying (4.2) is found output “yes”, otherwise “no”.

Clearly, in part (ii) there are only a finite number of sequences (wi)i≤t and for each
such sequence (4.2) can be tested. Hence, the algorithm works correctly.

As another very easy result we prove

67

4 Context–sensitive languages 68

Theorem 4.2. The family of CS languages is closed under rational operations.

Proof. We first note that for a given CS grammar we can effectively find another CS
grammar such that the terminals occur only in the productions of the form X → a,
with X ∈ N, a ∈ Σ, cf. the proof of CNF for CF grammars.

Proof for iteration: Assume the normal form. Define a new starting symbol S0,
duplicate all nonterminals using barred letters, and duplicate also the productions ac-
cordingly. Finally add the productions:

S0 −→ 1 | SS1 | S

S1 −→ SS2 | S

S2 −→ SS1 | S

For other rational operations the Theorem follows directly from the corresponding
proof for CF languages, when we assume that the nonterminal sets of different grammars
are disjoint.

It follows directly from the definitions that for each CS language L the language
L \ {1} is length increasing, i.e. generated by such a grammar. Next we prove the
converse which at the same time gives us better tools to show that some languages are
CS.

Theorem 4.3. Each language generated by a length increasing grammar is CS.

Proof. First we show that for each CS grammar G1 = (V, Σ, S,P), with S → 1 6∈ P, and
for each length increasing production

X1 · · ·Xn = α −→ β = Y1 · · · Ym with Xi, Yi ∈ V \ Σ

the language generated by the grammar

G2 = (V, Σ, S,P ∪ {α→ β})

is CS.
In order to prove this we define

G ′2 = (V ∪ {Z1, . . . , Zn}, Σ, S,P ∪ P ′),

where Zi´s are new letters and P ′ consists of the productions:

X1 · · ·Xn −→ Z1X2 · · ·Xn,

Z1X2 · · ·Xn −→ Z1Z2 · · ·Xn,
...

Z1 · · ·Zn−1Xn −→ Z1 · · ·ZnYn+1 · · · Ym,

Z1 · · ·ZnYn+1 · · · Ym −→ Y1Z2 · · ·ZnYn+1 · · · Ym,
...

Y1 · · · Yn−1ZnYn+1 · · · Ym −→ Y1 · · · Ym.

Clearly, G ′2 is a CS grammar. It is also obvious that L(G2) ⊆ L(G ′2). The inverse inclusion
is also true, since if Zi´s are introduced, they can be eliminated only by applying the
whole list of the new productions, which is equivalent to use of the production α→ β.

4 Context–sensitive languages 69

Now, we are ready to prove Theorem. Let G be a length increasing grammar. By
the argument of the proof of Theorem 4.2 we may assume that the terminals occur only
in the productions of the form X → a with X ∈ N , a ∈ Σ. Now let G ′ be the CS
grammar obtained from G by taking its all CS productions. Then, by the beginning of
this proof, the language generated by a grammar which is obtained from G ′ by adding
to it one of the productions of G, which is not in G ′, is CS. Hence, by induction L(G) is
CS as well.

Now we are able to give nontrivial examples of CS languages.

Example 4.1. Language L = {a2n

| n ≥ 1} is CS. We gave a grammar for this language
on page 7. It was not length increasing, but can be easily modified to be such. Indeed,
replace the first production by

S −→ aa | aaaa | #ta#

third rules by
t# −→ t′a# | t′aa

to eliminate t# −→ t′

and the last ones by
#t′ −→ aaaa | #taa

in order to eliminate the production #t′ → 1.

Theorem 4.4. CF (CS.

Proof. Each CNF CF grammar is CS, implying the inclusion. By above example and
Parikh Theorem, cf. also Example 3.5 on page 51, it is proper.

Our next results points out a connection between the families of languages generated
by CS and arbitrary grammars, respectively.

Theorem 4.5. Let L ⊆ Σ∗ be a language generated by an arbitrary grammar, and a
and b letters not in Σ. There exists a CS language L′ such that

(i) L′ ⊆ Lba∗, and

(ii) for each w ∈ L there exists an i such that wbai ∈ L′.

Proof. Let L = L(G) for a grammar G = (V, Σ, S,P). We define a length increasing
grammar

G ′ = (V ∪ {S ′, X, a, b}, Σ ∪ {a, b}, S ′,P1 ∪ P2),

where P1 and P2 consists of the productions

P1 = {α→ β | α→ β ∈ P and |β| ≥ |α|} ∪ {α→ βX |α|−|β| | α→ β ∈ P and |β| < |α|}

and P2 = {S ′ → Sb, bX → ba} ∪ {Xα→ αX | α ∈ V ∪ {b}}.

By Theorem 4.3, L(G ′) is CS. Moreover L(G ′) ⊆ Lba∗, since forgetting letters X, a and
b any derivation of G ′ is a derivation of G, and the elimination of X´s can take place
only on the right hand side of b which is introduced at the very beginning. Therefore (i)
holds. Also (ii) holds, since any step of a derivation of G can be simulated by G ′ by one
application of a production from P1 and a certain number of applications of productions
in P2.

4 Context–sensitive languages 70

From Theorem 4.5 we obtain

Corollary 4.6. If there exists a language L which is generated by a grammar but which
is not CS, then the family of CS languages is not closed under morphisms.

Proof. Consider the morphism which is the identity on Σ and maps a and b to the empty
word, and apply Theorem 4.5.

Remark 4.1. It was proved only recently that the family of CS languages is closed
under complementation (Immerman–Szelepscenyi Theorem).

Remark 4.2. As in the case of regular and context–free languages, there exists a class
of automata, so called linearly bounded automata, lba for short, which accept exactly CS
languages. From this class one can define deterministic CS languages — as languages
accepted by deterministic variants of these automata. A big open question is whether
these two families of languages coincide.

Chapter 5

Recursively enumerable languages

In this last chapter we consider the family of languages which is — as we shall see — the
largest possible family of languages the elements of which are algorithmically defined.
This family is defined via languages accepted by certain type of automata, so–called
Turing machines. These machines play an important role in the history of computing,
as well as the whole mathematics.

5.1 Turing machines

Turing machines were defined by Alan Turing in 1936 as a theoretical model for an
algorithm, and they were important tools to formalize the notion of undecidability as well
as to show that undecidable problems exist. This development in 1930´s destroyed the
dream of Hilbert (from about year 1900) that all “well defined” mathematical problems
are in principle algorithmically solvable.

The notion of a Turing machine can be defined in a number of different ways.

Definition 5.1. We define Turing machine, TM for short, as a seventuple

M = (Q, Σ, Γ, δ, q0, ∗, F),

where

· · · ∗ I N P U T ∗ ∗ · · ·

←→

q0 q1

qf

. . .

∧ read and
write head

Q is the finite set of states,

Σ is the finite input alphabet,

Γ is the finite tape alphabet with Σ ⊆ Γ,

δ is a (partial) transition function
Q× Γ→ Q× Γ× {L,R},

q0 ∈ Q is the initial state,

∗ ∈ Γ is the blank symbol,

F ⊆ Q is the set of final states.

71

5.1 Turing machines 72

Consequently, a TM consists of a finite control unit, one two–way infinite tape, and
one head which is capable of reading and writing as well as moving to both directions.
Transitions are of the form

(p, a) −→ (q, b,X) with p, q ∈ Q, a, b ∈ Γ and X ∈ {L,R}

meaning that, when in state p the head is scanning a square containing a, the machine
moves to the state q, replaces a by b and moves the head one square to the left or right.

Definition 5.2. An instantaneous description ofM, ID for short, is the word

α1qα2 ∈ Γ∗QΓ+,

where α1α2 is the shortest contents of the tape containing the square pointed by the
head and containing all squares filled by nonblank symbols. The initial ID is q0w when
w is the input. A one step computation or a move of M is defined as follows: Let
X1 · · ·Xi−1pXiXi+1 · · ·Xn be an ID and δ(p,Xi) = (q, Y, L) (resp. δ(p,Xi) = (q, Y,R))
then we write

X1 · · ·Xi−1pXi · · ·Xn `M

{

X1 · · ·Xi−2qXi−1Y Xi · · ·Xn if i > 1

q ∗ Y Xi · · ·Xn if i = 1.
(

resp. X1 · · ·Xi−1pXi · · ·Xn `M

{

X1 · · ·Xi−1Y qXi+1 · · ·Xn if i < n

X1 · · ·Xi−1Y q∗ if i = n.

)

Definition 5.3. Let `∗M (or `∗ for short) be the reflexive and transitive closure of the
above relation `M. Then the language accepted byM is

L(M) = {w ∈ Σ∗ | q0w `
∗
M uqv with q ∈ F and u, v ∈ Γ∗}.

Hence, w is accepted if it causes a computation from the initial ID to an ID containing
a final state.

For convenience we assume that if a word is accepted, then the computation halts,
i.e. there is no next move. Hence, actually the set F could be {q} ! If the word w is
not accepted the computation might halt or might continue forever.

Definition 5.4. Next we associate two families of languages with TM´s. A language
L ⊆ Σ∗ is recursively enumerable (or type 0), if there exists a TM M such that L =
L(M). Further a language L ⊆ Σ∗ is recursive, if there exists a TM M such that
L = L(M) andM halts on all input words. The corresponding families are denoted by
RE and Rec.

The above definitions motivate a number of comments.

Remark 5.1. Our model of TM is deterministic. Several modifications and extensions,
all equivalent to this basic model, are described later.

Remark 5.2. A TM differs from a 2FA only in the sense that it can write on the
tape. Indeed, assuming that a 2FA does not go to a final state when moving to the
left, which can be assumed, we observe that a language accepted by a 2FA is accepted
by a TM (respecting our convention that TM always halts when accepting). Hence, by
Proposition 2.21, Reg ⊆ RE.

5.1 Turing machines 73

Remark 5.3. Always halting TMM provides an algorithm to decide whether an input
word w is in L(M), that is to solve the membership problem for L(M). On the other
hand, arbitrary TMM provides only procedure to confirm that w ∈ L(M) if this is the
case, but gives no information in the case w 6∈ L(M). Hence, TM can be considered as
a semialgorithm — it gives “yes” answers correctly.

Remark 5.4. TMM can be used to compute (partial) algorithmic functions fM : Σ∗ →
Γ∗, for example, as follows:

fM(w) = u iff q0w `M uqv with q ∈ F and u, v ∈ Γ∗.

Also in the case of always halting machine M it can be used to solve the membership
problem for L by requiring that it computes

χL : Σ∗ → {0, 1}, χL(w) =

{

0 if w 6∈ L

1 otherwise.

Remark 5.5. Probably the most subtle feature of the TM is that it is not required to
halt always. This is essential, if we want to capture the notion of an intuitive algorithm,
as we do. This is demonstrated in the next example.

Example 5.1 (Diagonalization principle). Let the sequence

A1,A2,A3, . . . (5.1)

contain all algorithms in some formalization. (Of course, a well defined formalization
must provide a finite description for each algorithm, so that they can be put into a
sequence). Here we assume that each Ai is always halting. We claim that (5.1) does
not contain all intuitive algorithms. Assume the contrary and consider the intuitive
algorithm:

w −−−→ Find Aw −−−→ Compute Aw(w) −−−→ Add 1 −−−→ Aw(w) + 1.

Here we have assumed that Ai´s are defined to compute algorithmic functions N→ N.
Let the index of the above algorithm in (5.1) be i0. Then

Ai0(i0) = Ai0(i0) + 1,

a contradiction. The only assumptions needed for this contradiction are: the notion of
an intuitive algorithm is formalized in such a way that the sequence (5.1) can be formed!

A way to avoid the above contradiction is to allow nonhalting computations, even if
we want to formalize only always halting algorithms. In this light it becomes natural to
allow (or even require) that TM´s need not halt in all of their inputs.

Remark 5.6. TM is more a theoretical tool rather than a practical method of con-
structing algorithms — as we shall see.

In what follows we give a number of examples, including several theoretical ones,
showing the power of TM´s as language acceptors, as well as algorithms.

5.1 Turing machines 74

Example 5.2. L = {anbncn | n ≥ 1} is accepted by the following TMM:

(q0, a) −→ (qa, d, R)

(qa, a) −→ (qa, a, R) (
←
q , x) −→ (

←
q1, x, L), x ∈ {a, b, c}

(qa, b) −→ (qb, d, R) (
←
q1, x) −→ (

←
q1, x, L), x ∈ {a, b, c, d}

(qb, b) −→ (qb, b, R) (
←
q1, ∗) −→ (qd, ∗, R)

(qb, c) −→ (qc, d, R) (qd, d) −→ (qd, d, R)

(qc, c) −→ (qc, c, R) (qd, a) −→ (qa, d, R)

(qc, ∗) −→ (
←
q , ∗, L) (qa, d) −→ (qa, d, R)

(
←
q , d) −→ (

←
q , d, L) (qb, d) −→ (qb, d, R)

(
←
q , ∗) −→ (qf , ∗, R).

Now, by the 7 first transitions, the machine checks that the input is in a+b+c+, and
simultaneously changes the first occurrence of each letter to d. When reaching the right
end, i.e. when hitting to the blank, the machine goes to a new state

←
q , in which it

travels through the tape and checks, whether it contains only d´s. If “yes” the word is
accepted in state qf . Otherwise, by using states

←
q1 and qd a new iteration is started, so

that earlier written d´s are ignored, i.e. just passed.
It follows from the construction that L = L(M). Clearly, the transition function

here is only partial. However, it can be made complete by introducing a garbage state
g, where the computation continues forever. Note that this is true for any TM ! Further
in aboveM, Σ = {a, b, c} and Γ = {a, b, c, d, ∗}.

Example 5.3. Here we point out several tasks which can be performed by TM´s, and
which are useful as subroutines in TM constructions.

(i) Marking the workspace: Construct a TM such that

q′0w `∗ #q0w#.

Clearly, such a machine is easy to construct assuming that w does not contain #.

(ii) Finding a special symbol : Construct a TM such that

q′0w#w′ `∗ wq0#w′, with # not in ww′.

(iii) Making more space: Construct a TM such that

q′0w `
∗ q0 ∗ w, with ∗ not in w.

(iv) Copymachine: Construct a TM such that

q′0w `
∗ q0w#w, with ∗ and # not in w.

5.1 Turing machines 75

(v) Comparison machine: Construct a TM such that

q′0w#w′ `∗
{

wqy#w′ if w = w′

wqn#w′ otherwise,

where # and ∗ are not in ww′. Hence, making qy final this accepts the language
{w#w | w ∈ Σ+}.

For example the above Comparison machine can be constructed as follows:

– Mark the first symbol of w, say if a, change it to ā, and remember a in states;

– Search for # and move one step to the right;

– Compare a in the memory and the first symbol of w′, if different go to state qn

after searching #, if the same mark the second symbol of w′.

– Search for the marked symbol of w, and change its right neighbor marked and also
put it to the memory of states;

– Search now the marked symbol of w′, do the comparison of letters, change the
marking one square to the right, and continue as in the previous search step.

– If the comparison can be done to the very ends of w and w′, move to the state qy

after searching for #.

It is obvious that each of the above steps can be realized by a certain TM, that is by a
finite number of transitions. Hence, the comparison machine can be built.

Example 5.4 (Universal TM MU). We claim that there exists one fixed TM (that
is a fixed finite number of deterministic transitions) which can simulate any TMM. In
other words,

if q0w `
∗
M uqfv, (5.2)

thenMU “does the same”. How is this possible, sinceM may contain n input symbols,
so thatMU would need infinite number of input symbols.

The answer is that we have to encode the input w of M, as well as M itself into
MU´s tape alphabet! Without loss of generality we assume that the tape alphabet Γ
ofM and the state set Q satisfy:

Γ ⊆ {ai | i ≥ 0} = Σa, with ∗ = a0

and

Q ⊆ {qi | i ≥ 0} = Σq.

Further ifM has n states, then Q = {q0, q1, . . . , qn−1} with q0 initial and q1 final. Note
that we need only one final state since in final states computations stop.

Now we encode the words over Σa and Σq into the binary alphabet by a morphism
c : (Σa ∪ Σq)

∗ → {0, 1}∗ ,

ai 7−→ 102i+31

qi 7−→ 102i+41.

5.1 Turing machines 76

Further by defining c(L) = 101 and c(R) = 1001 we can encode the input w = ai1 · · · aik

ofM as

c(w) = c(ai1) · · · c(aik),

and a transition t = (p, a, q, b,X) as

c(t) = c(p) c(a) c(q) c(b) c(X).

Finally, binary code ofM containing exactly the transitions t1, . . . , tr is

c(M) = 111 c(t1) 1 c(t2) 1 · · · 1 c(tr) 111.

Hence, c(M) starts and ends with four 1´s and does not contain four consecutive 1´s
inside. Note also that three consecutive 1´s in c(M) show always a border between
encodings of two transitions.

Now the universalMU simulatesM, that is (5.2), in the sense

i c(M) c(w) `∗MU
c(u) f c(v), (5.3)

where i is the initial state of MU and f its final state. The machine MU operates as
follows:

I. It creates to the beginning of its tape c(q0)c(ai1), where ai1 is the first letter of w,
i.e.

i c(M) c(w) `∗MU
c
↑
(q0) c(ai1) c(M) c(w), (5.4)

where c(w) means that the first 1, that is a position of the head ofM at the beginning
of the computation is marked, and ↑ tells that the head ofMU is here in some state.

II. It searches for the transition used byM in the first step, and marks it by marking
the occurrence of 1 just before this transition.

III. It simulates M by changing the state, that is the first block in the tape, and the
marked symbol in the last block of the tape, and moreover moves the marked symbol
in the last block according to the transition considered. It also removes the marking of
the transition.

IV. It changes the second block of the tape to the symbol now marked in the last
block.

V. It checks whether the contents of the first block corresponds to the accepting
state q1 of M. If “yes” MU erases the three first blocks and searches for the marked
position in the fourth block and enters to its final state. Otherwise it continues in II
with the current values of the first two blocks.

Above the blocks means the four coded parts of the right hand side of (5.4). It
follows from the construction thatMU simulatesM in the sense of (5.3).

Therefore it remains to be shown that each step I–V can be realized by a finite
number of (deterministic) transitions. In the quintuple level this is tedious. In the
intuitive level it is not very difficult to become convinced of that:

In step I MU has to create c(ai1) to the left on the input tape. This simply means
that MU has to search for the beginning of c(w), which can be identified by 15, and
copy from there a code of ai1 to the left of the tape. And secondly create c(q0), i.e.
100001, still to the left of the above. Also the beginning of c(w) must be marked. All

5.1 Turing machines 77

this can be realized by searching for a certain subword, using a suitable copymachine,
marking a certain symbol and creating a fixed finite word to a given position.

The other steps also require only certain elementary operations, which can be achieved
by certain finite sets of transitions. For example, in II Comparison machine is needed to
find out the transition in c(M) to be used in the simulation. Further to replace a symbol
or state (more precisely its coded version) requires a Comparison machine together with
machine which creates a sufficient amount of space for the new symbol or state, cf. (iii)
in Example 5.3.

All in all machines which can search for a marker, mark a new symbol, copy, compare,
and erase (and some others) are enough to be used to constructMU .

As we already said the detailed construction according to the above lines would be
tedious and boring. However, such a construction can be made, and the smallest known
Universal Turing Machine´s are surprisingly small: There are such machines with

6 states and 6 tapesymbols

or
7 states and 4 tapesymbols.

Therefore, everything what can be done by TM´s can be done by only 28 transitions!!
Here the final state is not counted.

Example 5.5 (Simulation of a many tape TM by ordinary one). As we saw in
the construction ofMU above, the head of a TM might have to travel through the tape
again and again. This can be avoided in some extend in many tape TM´s. A k-tape TM
is like an ordinary TM except that instead of one tape only it contains k tapes, each of
which is provided by an independent head. Further in each step the machine can

(i) change a state (which is common to all tapes);

(ii) write a new symbol on each tape to the square scanned by its head; and

(iii) move each of the head 0 or 1 steps to left or right.

Moreover, at the beginning the first tape contains the input, while the others contain
only blank symbols ∗, and the word is accepted if the machine enters to a final state.

Now, we claim that any k-tape TMM can be simulated by an ordinary TMM′ in
the sense that L(M) = L(M′). Contrary to Example 5.4 no encoding is needed here.
The simulation is very obvious: The ID ofM can be illustrated as:

· · · 1 S T ∗ T A P E ∗ · · ·

↑

· · · 2 N D ∗ T A P E ∗ · · ·

↑...

· · · k T H ∗ T A P E ∗ · · ·

↑

with common state q

Now in M′ this is put into one tape having k tracks, and positions of the heads are
indicated by marking one symbol in each track. Moreover,M′ creates at the beginning
endmarkers to tell the ends of the inputs. So the above ID corresponds in M′ the ID:

5.1 Turing machines 78

1 S T ∗ T A P E ∗ ∗

2 N D ∗ T A P E ∗ ∗
...

...
...

...
...

...
...

...
...

...

k T H ∗ T A P E ∗ ∗

↑
q

· · · # # · · ·

The simulation of a step of M is performed by traveling in between endmarkers and
changing at the same time each track according to the considered transition ofM. Note
that formally transitions ofM are of the form

(
p, (a1, . . . , ak)

)
−→

(
q, (b1, X1), . . . , (bk, Xk)

)

with p, q ∈ Q, ai, bi ∈ Γ and Xi ∈ {L,R, 0}. Also the creation of endmarkers, as well as
marking the initial positions of the heads to be the same as the position of the first head,
can be done by suitable transitions. (To be precise when creating the endmarkers each
letter a in the input w is changed to the vector (a, ∗, ∗, . . . , ∗)T). Finally,M′ accepts iff
M does so.

It is clear, that such anM′ can be constructed.

Example 5.6 (Simulation of a nondeterministic TM by ordinary one). A non-
deterministic TM M, NTM for short, is like a (deterministic) TM, but instead of a
partial transition function it has a transition relation, i.e. a finite set of transitions

(p, a) −→ (q, b,X) (5.5)

without assumption that, for each pair (p, a), there exists at most one triple (q, b,X)
such that (5.5) is a transition. Hence, the computation caused by the input w is not
unique, and w is accepted, that is w ∈ L(M) iff at least one of these computations leads
to a final state.

Now, we construct a deterministic three tape TMM′ such that

L(M′) = L(M).

Let d be the maximal number of right hand sides in (5.5) for any pair (p, a) ∈ Q×Γ. Then
any computation ofM of length n is determined by a word of length n over the alphabet
{1, . . . , d}: its ith letter tells which possibility in the ith step of the computation must
be chosen (Hence, transitions for pairs (p, a) must be ordered).

The simulating machineM′ contains three tapes:

The 1st tape contains the input ofM, and it is never changed;

The 2nd tape contains a word in {1, . . . , d}+, more precisely all words in this alphabet
are generated here in lexicographic order.

The 3rd tape is used to simulate a computation ofM determined by a current contents
of the second tape.

We need as a subroutine a TMMg which computes

q0α `
∗ q0 S(α) for α ∈ {1, . . . , d}+,

5.2 Church´s thesis 79

where S(α) is the next word to α in the lexicographic order. Such a machine is easy to
construct.

Now, M′ behaves as follows: After getting the input w of M it generates 1 to the
second tape, copies w to the third tape and simulates on the third tape the computation
ofM determined by the word on the second tape. IfM accepts so doesM′. Otherwise
M′ erases the word from the third tape and changes the word on the second tape to
the next one in lexicographic order. Now, the same is repeated.

Intuitively, M′ simulates in a row all computations of M, and if any of those is
accepting M′ accepts. Hence L(M′) = L(M), so that it remains to be convinced that
M′ can be constructed. ButM′ has to perform only certain simple tasks, which can be
realized by a finite set of deterministic transitions.

Finally, the above M′ can be replaced, by Example 5.5, by one tape deterministic
TM.

Using any encoding, such as c on page 75, we can code any language L ⊆ Σ∗ to a
language over {0, 1}, such that we have one–to–one correspondence

Σ∗ ⊇ L 3 w ←→ c(w) ∈ c(L) ⊆ {0, 1}∗.

Due to this, in many cases in formal language theory, the size of the alphabet is not
important, if it is at least 2.

Our next result says that in TM´s additional tape symbols are not actually needed.

Proposition 5.1. Each recursively enumerable language L ⊆ {0, 1}∗ can be accepted by
a TM with the tape alphabet Γ = {0, 1, ∗}.

The idea of the proof of Proposition 5.1 is to code tape symbols to the alphabet
{0, 1}, as in page 75. However, we omit the details here.

Remark 5.7. Consider a computation in a TM caused by an input w. It uses a certain
number of steps as well as squares on the tape. These numbers are called the time and
space complexity of this computation. This leads to important complexity classes of
languages. Let f : N→ N be a function. Time and space complexity classes associated
with f are:

TIME(f) = {L | ∃ TMM : L = L(M) and ∀w ∈ L :

w is accepted in at most f(|w|) steps}

SPACE(f) = {L | ∃ TMM : L = L(M) and ∀w ∈ L :

w is accepted using at most f(|w|) squares in the tape}.

5.2 Church´s thesis

Clearly, each Turing machine defines an intuitive (not necessary always halting) algo-
rithm, i.e. a finitely defined effective procedure to associate an output to a given input.

How about reverse? This is claimed in so–called

Church´s Thesis. Turing machine is a formal counterpart of an intuitive notion
of an algorithm.

This means that if something can be done by intuitively algorithmic procedure, it
can be realized by a TM as well. Here this something can be:

5.3 Properties of recursively enumerable languages 80

– an algorithm to compute a function, for example, N→ N, Σ∗ → ∆∗;

– an algorithm to decide a decision problem w → A → Yes/No;

– an effective procedure to list elements of a set.

Church´s Thesis, CT for short, is not a mathematical statement in the sense that it
could be proved true. Indeed, what is an intuitive algorithm? How to show that TM can
simulate any intuitive algorithm if we do not know what they are precisely?

In principle, it would be possible to disprove CT (if this would be the case), simply
by introducing a problem which could be solved by an intuitive algorithm, and then
proving that no TM can solve this problem. However, CT is generally accepted as an
axiom type statement. The following facts strongly support this view:

1. No counterexample for CT has been found, i.e. no problem intuitively algorithmically
solvable has been introduced, which could not be solved by a TM.

2. Strong closure properties of TM´s, i.e. all extensions of TM´s like those considered
in Examples 5.5 and 5.6, lead to the same class of accepted languages or functions
computed by these devices.

3. Other formalizations, such as recursive functions or grammars lead again to the same
class of algorithmically computed functions as do TM´s.

5.3 Properties of recursively enumerable languages

In this section we consider some basic properties of recursively enumerable and also
recursive languages. Moreover, a characterization, explaining the name “recursively
enumerable”, is given.

We start with

Theorem 5.2. The family of recursive languages is closed under complementation.

Proof. Let L = L(M) for an always halting TM M. We have to construct a TM M′

which is always halting and accepts Σ∗ \ L. Now, since M is deterministic and always
halting, for each input w

(i) M halts in a final state accepting w, or

(ii) M halts in a nonfinal state rejecting w.

The halting means that there is no next move. Hence, we can make accepting compu-
tations rejecting by changing the final state of M to a nonfinal in M′. Further each
rejecting computation in M can be made accepting in M′ by introducing a new final
state f forM′ and add toM′ transitions

(p, a) −→ (f, a,R),

whenever inM there is no transition for the pair (p, a), with p nonfinal inM. Otherwise
M′ is asM.

Obviously, L(M′) = Σ∗ \ L(M). This construction can be illustrated as follows:

5.3 Properties of recursively enumerable languages 81

w > M

M′

−→ Yes

−→ No �
�

�Q
Q

Q

q

y

Yes

No

Theorem 5.3. Both families RE and Rec are closed under union and intersection.

Proof. Union.(i) Let L1 and L2 be recursive, i.e. Li = L(Mi) for always halting TM´s
M1 and M2. A two–tape TM M∪ accepting L1 ∪ L2 is easy to construct: For input
w M∪ first copies w to the second tape, then simulatesM1 on the first tape and after
halting M2 on the second tape. If either of the simulations is accepting, then M∪

accepts. Clearly, L(M∪) = L1 ∪ L2, and since M∪ is always halting, by Example 5.5,
L1 ∪ L2 ∈ Rec.

(ii) If Li = L(Mi), for i = 1, 2, for general TM´sM1 andM2, then the above does
not work, since the first simulation need not halt. Now M∪ is constructed as follows:
It first copies the input w to the second tape, and then simulates alternately one step
on the first and one step on the second tape and accepts if one of the simulations is
accepting. This shows as above that L1 ∪ L2 ∈ RE.

Intersection. As above, except that the constructed M∩ accepts iff both the simu-
lations are accepting.

The above constructions can be illustrated as follows:

��
PPPP

w >

>

>

>

>M1

M2

M∩ for Rec:

Yes

No

Yes

Noq y

Yes

No

@@

��
w

>

>

>

>

M1

M2

M∪ for RE:

Yes

Yes

q
y Yes

Our next result shows a connection between the families RE and Rec.

Theorem 5.4. For any language L ⊆ Σ∗ we have:

L ∈ Rec ⇔ L , Σ∗ \ L ∈ RE .

Proof. ⇒: Clear, by Theorem 5.2 and the fact that Rec ⊆ RE by definitions.
⇐: Assume that L = L(M1) and Σ∗ \ L = L(M2). We have to construct a TM

M which always halts and accepts L(M1). Again M will be originally a 2-tape TM
(which is then converted to a 1-tape machine by Example 5.5). For a given input w,M
first copies w to the second tape, then simulates alternately one step ofM1 on the first
tape and one step ofM2 on the second tape. If the simulation on the first tape leads to
a final state of M1, then M accepts (and halts). If the simulation on the second tape
leads to a final state of M2, then M halts, but goes to a rejecting state. Exactly, one
of these cases takes place for any input, so that M always halts and accepts exactly
L(M1).

It is worth noting that although we know that exactly one of the above simulations
for any w is accepting we do not know how many steps are needed for the acceptance.

Now, the illustration of the machineM is as follows:

5.3 Properties of recursively enumerable languages 82

w
>

>

>

>

>

>

M1

M2
Yes

Yes

Yes

No

It follows from Theorems 5.2 and 5.4 that we have the following exhaustive classifi-
cation for pairs (L, Σ∗ \ L) of complementary languages:

(i) Both L and Σ∗ \ L are recursive;

(ii) Neither L nor Σ∗ \ L is recursively enumerable;

(iii) One of the languages L and Σ∗ \ L is recursively enumerable but not recursive,
while the other is not recursively enumerable.

Next we prove that the inclusion Rec ⊆ RE is proper. In doing so we consider the
language

L0 = {c(M) c(w) ∈ {0, 1}∗ | M is a TM and w ∈ L(M)},

where c is the encoding from page 75. We need one auxiliary result.

Lemma 5.5. The language LM = {c(M) | M is a TM} is recursive.

Proof. By the definition of the encoding c

LM = 111
(
1(00)∗0411(00)∗0311(00)∗0411(00)∗0311{0, 00}1

)∗
111 ∩ 111Lc111,

where

Lc ={w ∈
(
(10+1)5

)+
| for each i the number of zeros in the (1 + 5i)th block of zeros

is different from 6, and for each i 6= j the number of zeros in (1 + 5i)th and

(1 + 5j)th or in (2 + 5i)th and (2 + 5j)th blocks of zeros are different}.

The latter language guarantees that the TM is deterministic.
Clearly, the first part of the right hand side of LM is regular, and hence recursive. The

language 111Lc111 can be accepted by an always halting TM, which is built from suitable
comparing machines of Example 5.3. Hence, by Theorem 5.3, LM is recursive.

Theorem 5.6. L0 ∈ RE \Rec.

Proof. First we show that L0 ∈ RE. We construct a 3-tape TMM′ accepting L0.
FirstM′ checks using the machine of Lemma 5.5 that a prefix of the input up to the

second occurrence of four consecutive 1´s is in LM . If “yes”, then M′ copies the suffix
c(w) to the second tape and the word 100001p, where p is a prefix of w in 10+1 to the
third tape. Hence, the third tape contains a code of q0 and that of the first letter of w.

¿From now on the simulation of M is as in the construction of Universal Turing
Machine. The third tape contains the information about the current state and symbol
scanned by the head, and based on it M′ can find a transition from the first tape,
and simulate it on the second tape, as well as change the contents of the third tape
corresponding to the new state and new symbol scanned. After each simulation step

5.3 Properties of recursively enumerable languages 83

M′ checks whether the state is final, i.e. the third tape starts as 1061, and if “yes”,
thenM accepts and so doesM′.

So we have proved that L0 ∈ RE.
In order to prove that L0 6∈ Rec we assume the contrary: L0 = L(M′) for an always

halting TMM′.
We claim that the language

Ld = {c(M) | M is a TM and it accepts c(M)}

is recursive as well. An always halting TM Md accepting Ld can be constructed as
follows: FirstMd checks that its input is in LM and then changes it to the word xc(x)
simply copying (and coding it by c) to the end of the input (Here we have to assume
that 0, 1 ∈ Σd). Then Md goes to the initial ID of M′ on xc(x) and continues as M′

until it halts, and accepts iffM′ accepts. So we have shown that Ld ∈ Rec.
Next, by Theorem 5.2, also

L2 = Σ∗ \ Ld =
{
v ∈ {0, 1}∗ | v is not a code of any TM or

∃ TMM : v = c(M) and M does not accept c(M)
}

is recursive, that is accepted by an always halting TM, sayM2.
Consider now the word v = c(M2):

c(M2) ∈ L2 ⇔
↑

def. of L2

c(M2) 6∈ L(M2) ⇔
↑

def. of M2

c(M2) 6∈ L2,

a contradiction. Consequently, L0 cannot be recursive.

¿From above we derive:

Corollary 5.7. The family RE is not closed under complementation.

Proof. Theorems 5.2 and 5.6.

Corollary 5.8. The language Ld = {c(M) | M is a TM and M accepts c(M)} is re-
cursively enumerable, but not recursive.

Proof. By the proof of Theorem 5.6 Ld ∈ RE. Further the contradiction in the same
proof was derived from the recursiveness of Ld.

More consequences of Theorem 5.6 are given in the next section.
We conclude this section by characterizing the family RE in such a way which mo-

tivates the term “recursively enumerable”. Namely, we show that languages in RE are
exactly those which can be effectively listed. Formally, this means that they can be
listed by a Turing machine.

A Turing machine can be used as language generator as follows. The machine is a
multitape machine having a special output tape on which the head can move only to
the right and can write in each square only once. On this tape the words from Σ∗ are
written, words being separated by the marker #. At the beginning all the tapes are
empty.

Let M be a TM defined above. The language generated by M, G(M) for short, is
the set of all wordsM outputs in between markers #.

There are two obvious observations:

5.4 Undecidability 84

1. G(M) is finite ifM halts (when started at the blank input tapes);

2. If L = G(M),M provides an effective procedure to list elements of L, but in which
order is not known.

Now, we obtain a characterization:

Theorem 5.9. For a language L ⊆ Σ∗ L is recursively enumerable iff L can be generated
by a TM.

Proof. ⇐: Assume that L = G(M) for a TM M. We construct a TM M′ as follows:
M′ has one tape more than M, namely the input tape. For a given input w M′ first
simulates M on its all other tapes, and whenever M outputs #, M′ tests whether
its input w coincides with the word on the output tape immediately before the #. If
“yes”, then M′ goes to a final state, and otherwise continues the simulation. Clearly,
L(M′) = G(M).
⇒: Let L = L(M) for a TMM. We have to construct a generatorM′ for L. This

is not so obvious, but can be based on the idea:
“For each i, j ≥ 1 M′ simulates M i steps on the jth input word, and output the

jth input, if this simulation is accepting”. If such an M′ can be constructed we are
done: clearly,M′ outputs only words from L(M), and each word in L(M) is produced
byM′ since it has an accepting computation ofM of some finite length.

In order to constructM′ we need TM´s for the following tasks:

(i) Mn which changes an input w ∈ Σ∗ to the next word S(w) in the lexicographic
order of Σ∗. Clearly, such a TM exists.

(ii) Mc which changes the pair (i, j) ∈ N 2
+ (suitable encoded) to the next pair in the

order ≤ defined as

(i, j) < (k, l) ⇔ i + j < k + l or i + j = k + l and i < k.

We leave it as an exercise to conclude that this can be achieved by a TM.

Now, the required M′ is constructed as follows: M′ has five tapes including the
output tape: the first one is to regenerate the input of M, the second one to simulate
M on the jth input i steps, the third and the fourth tape contain numbers i and j, and
the fifth is the output tape.

The contents of the first tape is obtained by iterating the machine Mn as many
times as shown by the contents of the fourth tape. Then this input is copied to the
second tape whereM is now simulated as many steps as the contents of the third tape
indicates. If the simulation halts in the accepting state, then the contents of the first
tape is produced in the fifth tape with marker #. Otherwise, the first and the second
tape are erased and the pair (i, j) corresponding to contents of the third and fourth tape
is replaced by the next pair. Now, the process is started again.

5.4 Undecidability

In this section we come to one of the highlights of the theory of formal languages, or
more precisely of computability. Namely, we show that there exist precisely defined,
and even natural problems, which are algorithmically undecidable.

5.4 Undecidability 85

The existence of such problems is contrary to the general belief of mathematicians
of the very beginning of this century. Indeed, D. Hilbert pointed out in International
Congress of Mathematicians in 1900 a number of open problems, and one of those (so–
called “Hilbert´s 10th problem”) asked “to find a general algorithm which would decide
whether a given Diophantine equation P (x1, . . . , xn) = 0 has a solution in Zn ”. It was
not thought at that time that the problem could have been undecidable, i.e. there does
not exist any algorithm to solve it. This, however, turned out to be true (Matiyasevič,
1970).

How to show that a problem is algorithmically undecidable, that is no algorithm
solves it? What is “any algorithm”? The notion of an algorithm has to be formalized,
as a Turing machine for example, in order to be able to show that “something” is
undecidable.

On the other hand, in order to show that “something” is decidable no formalization
is necessary : it is enough to give an effective procedure, or an intuitive algorithm, which
solves the problem.

Now, let us return to the language

L0 = {c(M) c(w) | M is a TM and w ∈ L(M)}

of Theorem 5.6. It can be interpreted as a problem “Does a given TM M accept its
input w?”. Indeed, words in L0 are coded forms of those instances of the problem, for
which the answer is “yes”. Words in {0, 1}∗ \ L0, in turn, are those which corresponds
the “no” for the above problem, or are of the wrong form which also can interpreted
as “no” answer by considering an input word of the wrong form as a TM having no
transition and/or having its input not in Γ∗.

Definition 5.5. We call a problem undecidable iff there is no always halting TM which
solves it.

Of course, this requires that a problem has to be encoded to a suitable form for TM´s,
i.e. to a language. It follows from CT that the above definition of the undecidability
means that there is no algorithm, what so ever, to solve the considered problem.

It follows that Theorem 5.6 yields

Theorem 5.10. The problem “Does a given TM M accept a given input w?” is unde-
cidable, i.e. the corresponding language L0 is not recursive.

Similarly, from the Corollary 5.8 to Theorem 5.6 we obtain that the problem “Does
a given TMM accept its own code c(M)?” is undecidable.

Once we have found one undecidable problem others can be obtained by a reduction:
Let Pu be a known undecidable problem and P some other problem. If we can associate
to an arbitrary instance i of Pu on instance ϕ(i) of P such that

i is “yes”–instance iff ϕ(i) is a “yes”–instance

and the transformation i 7→ ϕ(i) can be done by a TM (algorithmically), then P is
undecidable, as well. Indeed, to solve the Pu, its instance i can be transformed to ϕ(i),
and then apply a TM solving P , if such a TM would exist.

In terms of languages, i.e. coded instances of problems, we can formulate:

5.4 Undecidability 86

Definition 5.6. For languages L ⊆ Σ∗ and L′ ⊆ ∆∗, L is reduced to L′, in symbols
L ≤ L′, iff there exists a TM which computes a total function ϕ : Σ∗ → ∆∗ such that

w ∈ L iff ϕ(w) ∈ L′. (5.6)

It follows immediately, that if L ≤ L′, then

(i) L′ ∈ Rec ⇒ L ∈ Rec,

(ii) L 6∈ Rec ⇒ L′ 6∈ Rec.

These conditions means that if L and L′ corresponds to the codings of problems P and
P ′, then (i) says that if P ′ is decidable so is P , and (ii) says that if P is undecidable so
is P ′.

Example 5.7. The problem Ph “DoesM halt on its input w?” is undecidable. To see
that we consider the language

Lh = {c(M) c(w) | M is a TM andM halts on w}.

We reduce L0 to Lh, i.e. show that L0 ≤ Lh. Then the result follows from Theorem 5.6
and (ii) above.

LetM be a TM. Construct a TMM′ such that it changes the halting, but rejecting
computations to nonhalting ones. Further let ϕ be a mapping

ϕ : c(M) c(w) 7→ c(M′) c(w).

Clearly, ϕ can be computed by a TM — it only has to add certain transitions to M.
Moreover, for any input w

M accepts w iff M′ halts on w.

So indeed we have proved the reduction L0 ≤ Lh and hence Ph is undecidable.

Example 5.8. The problem P∃h “Does M halt on some of its inputs?” is also unde-
cidable. The coded language is now

L∃h = {c(M) | M is a TM and ∃w such thatM halts on w}.

Now Ph of Example 5.7 can be reduced to this as follows: For an instance of Ph, that is
(M, w), we construct a TMM′ such that

– M′ forgets its own input x,

– generates the input w, and

– simulatesM on w.

Such aM′ can be clearly constructed. Now,

M halts on w iff M′ halts on some input (iffM′ halts on all of its inputs).

Hence, we have an informal proof that P∃h, as well as the problem P∀h “Does M
halt on all of its inputs?”, is undecidable. To make it formal we should construct a TM
computing

ϕ : c(M) c(w) 7−→ c(M′).

Of course, this can be done.

5.4 Undecidability 87

Example 5.9. The language Lnh = {c(M) | M never halts} is not recursively enumer-
able. Indeed, if it would be, then so would be

Σ∗ \ L∃h = Lnh ∪ {w | w is not a code of a TM} = Lnh ∪ (Σ∗ \ LM).

Now, by the ideas of the proof of Theorem 5.9, L∃h is in RE and by the previous example
it is not in Rec. Hence Σ∗ \L∃h 6∈ RE. Further LM ∈ Rec, and so is Σ∗ \LM , implying,
by Theorem 5.3, that also Lnh is not recursively enumerable.

Now we obtain easily

Theorem 5.11. The equivalence problem for TM´s is undecidable.

Proof. LetM0 be a TM which never halts. Then clearly, for any TMM

L(Ma) = L(M0) iff M never halts,

where Ma is obtained from M by making all halting computations accepting. So the
result follows from Example 5.9. (Formally the mapping ϕ is c(M) 7→ c(Ma)c(M0)).

We have seen that a number of decision problems associated to TM´s are undecid-
able. Of course, all such problems are not so, for example “Does a TM have 2n states?”
is clearly decidable. However, any problem asking “Does a given recursively enumerable
language (defined by a TM) have a property P?” is undecidable, if only the property P
is nontrivial, i.e. not true for all recursive enumerable languages!

Theorem 5.12 (Rice´s Theorem). Each nontrivial property P of RE languages is
undecidable, i.e. the language

LP = {c(M) | M is a TM and L(M) has a property P}

is nonrecursive.

Proof. We may assume that the empty language L∅ = ∅ does not satisfy P — otherwise
we consider the negation of P . On the other hand, there exists a TM ML such that
L = L(ML) possesses the property P , i.e. c(ML) ∈ LP .

We reduce the problem of Theorem 5.6 to P , that is we show that L0 ≤ LP . In order
to do so we associate to a pair (M, w) a TMM′ as follows:

– After receiving an input x,

– M′ first simulatesM on w, and if this accepts,

– then simulatesML on x, and M′ accepts ifML accepts.

This can be illustrated as:
x

w >

>
>

>

M
ML

M′

Yes

Yes
Yes

Formally, we have to construct a TM which computes

c(M) c(w) 7−→ c(M′). (5.7)

5.4 Undecidability 88

In order to do that we have to analyze what transitions are needed in M′. They are
those allowing to simulate M and ML, i.e. transitions of M and ML, and transitions
allowed to print a w, as well as some which control the use of the above transitions.
Since transitions of ML are constant (independent of c(M)c(w)) they can be created.
Also transitions printing w can be computed from c(w). Hence, a TM computing (5.7)
can be constructed: it creates a code ofM′ from c(M)c(w).

By the construction ofM′, we have

w ∈ L(M) ⇒ L(M′) = L

w 6∈ L(M) ⇒ L(M′) = ∅,

and therefore,
w ∈ L(M) ⇔ L(M′) has property P,

or more formally,
c(M) c(w) ∈ L0 ⇔ c(M′) ∈ LP .

Now, we turn to show that there are much more natural problems than the above
ones which are undecidable. We already mentioned that Hilbert´s 10th problem is such.
Another one, and particularly important from the point of view of formal languages, is
the following problem.

Definition 5.7. Post Correspondence Problem, PCP for short, asks, for two given mor-
phisms h, g : Σ∗ → ∆∗, whether there exists a word w ∈ Σ+ such that h(w) = g(w), in
other words, whether the equality language E(h, g) of the pair (h, g) is nonempty:

E(h, g) = {w ∈ Σ+ | h(w) = g(w)}
?

6= ∅. (5.8)

We can fix Σ = {1, . . . , n}. Then the Modified Post Correspondence Problem, MPCP
for short, asks whether

E(h, g) ∩ 1Σ∗
?

6= ∅. (5.9)

Elements in (5.8) and (5.9) are called solutions of corresponding instances of PCP and
MPCP.

We prove

Theorem 5.13 (Post, 1946). PCP is undecidable.

Proof. First we show that it is enough to prove that MPCP is undecidable:

Claim. MPCP reduces to PCP.

Proof. To prove this we associate with an arbitrary instance of MPCP, say

h : i 7→ αi, g : i 7→ βi, for i = 1, . . . , n, αi, βi ∈ ∆∗,

an instance of PCP h′, g′ : {0, 1, . . . , n + 1}∗ → (∆ ∪ {#, $})∗ such that

E(h, g) ∩ 1Σ∗ 6= ∅ iff E(h′, g′) 6= ∅.

In order to define h′ and g′, we associate to a word γ = a1 · · · an, ai ∈ ∆, two new
words

l(γ) = #a1#a2 · · ·#an and r(γ) = a1#a2# · · · an#.

5.4 Undecidability 89

In particular for the empty word ε l(ε) = r(ε) = ε. Now, h′ and g′ are defined by

0 7−→ #r(α1) 0 7−→ l(β1)
h′ : i 7−→ r(αi) g′ : i 7−→ l(βi) , for i = 1, . . . , n

n + 1 7−→ $ n + 1 7−→ #$.

Now assume that w = 1w′ is a solution of the instance (h, g) of MPCP. Then
h(1w′) = g(1w′), so that #r

(
h(1w′)

)
$ = l

(
g(1w′)

)
#$, which means that h′(0w′ n+1) =

g′(0w′ n+1). Hence, 0w′ n + 1 is a solution of (h′, g′).
Conversely, if w is a solution of the instance (h′, g′) of PCP, then w starts with 0 and

ends with n + 1, i.e. w = 0w′ n + 1. Moreover, we may assume, since the occurrences
of $ have to match in the h′- and g′-images of solutions, that w′ does not contain either
0 or n + 1. Therefore we obtain from the identity h′(0w′ n + 1) = g′(0w′ n + 1) the
identity h(1w′) = g(1w′) simply erasing the markers. Hence, 1w′ is a solution of (h, g).

Proof of Theorem now continues as follows. By Claim it is enough to reduce some
undecidable problem P to MPCP. We use as P the problem of Theorem 5.10: “Decide
whether a TMM accepts an input w”.

We associate a pair (M, w) with an instance (h, g) of MPCP as follows: The mor-
phisms h, g : Σ∗ → ∆∗ are given in the following table, which at the same time fixes the
alphabets Σ and ∆:

a ∈ Σ : h(a) : g(a) :

(0) 1 # #q0w#

(i) X X X , for X ∈ Γ ∪ {#}

(ii)







(q,X) −→ (p, Y,R)
(
Z, (q,X) −→ (p, Y, L)

)

(
#, (q,X) −→ (p, Y, L)

)

(
#, (q, ∗) −→ (p, Y,R)

)

(
#, Z, (q, ∗) −→ (p, Y, L)

)

qX
ZqX
#qX
q#

Zq#

Y p
pZY

#p ∗ Y
Y p#

pZY #

(iii)







(X,Y, q)
(X, q)
(q, Y)

XqY
Xq
Y q

q
q
q






, for q ∈ F

(iv) q q## # , for q ∈ F,

where # is a marker, X,Y in (iii) and Z in (ii) ranges over the tape alphabet Γ, and
letters or last components of letters in (ii) are transitions of M. As usual we assume
that there are no transitions from final states. Further, without loss of generality we
can assume that the first move ofM is to the right. If this is not the case originally, we
introduce two extra moves to the beginning.

We have to show:

w ∈ L(M) iff MPCP (h, g) has a solution in 1Σ∗.

Assume first that w ∈ L(M), i.e. inM there exists an accepting computation

q0w ` α1q1β1 ` α2q2β2 ` . . . ` αkqβk, with q ∈ F.

Then we can construct a solution δ for the MPCP as shown in the figure below:

5.4 Undecidability 90

q0 w # α1 q1 β1 # α2 q2 β2 # · · · # αk q βk # α′k q βk # · · · # q #

g :

h :

↓ ↓ ↓ ↓

↑ ↑ ↑ ↑

δ =

δ =

1

1

· · ·

· · ·

Indeed, δ starts with 1, so that we have
g(1)

h(1)

q0 w #.

Now q0w can be covered by h-images, when by the construction, g-images defines the
next ID, namely α1qβ1, and we obtain

g :

h :
q0 w # α1 q1 β1. (5.10)

Now, if α1 is empty and the second move is to the left, we take an h-image from the
third alternate of (ii), and otherwise from (i), and we can cover #α1q1β1 by an h-image,
creating at the same time as a g-image the next ID of M α2q2β2 (possibly containing
unnecessary blanks at the beginning and missing the last letter if it is ∗). By the same
argument we obtain:

g :

h :
q0 w # · · · # αk q βk #. (5.11)

Now, taking h-images from (i) and (iii) we can “erase αk and βk” step by step and
obtain:

g :

h :
q0 q # · · · # αk q βk · · · # q ##.

Hence, one application of (iv) completes the construction of δ.
Conversely, if the pair has a solution, which we can assume to be such that it is not

a prefix of any other solution, then it is of the above form, showing that w ∈ L(M).
Indeed, any solution δ must start by 1, so that

g :

h :
q0 w #.

Now, q0w can be covered by h-images only in the way described earlier. This is so since
M is deterministic. Therefore our solution δ satisfies (5.10) and we can continue with
the same argument as long as a final state is not introduced in g-images. However, this
has to happen, since otherwise the h-image would always be shorter than the g-image.
So we have to come to a situation (5.11), proving that w ∈ L(M).

Next we give a number of applications of the undecidability of the PCP.

Example 5.10. Consider the following problem: Given a finite set of 3 × 3 matrices
over natural numbers. Does there exist a product of these matrices having the same
number in entries (1, 2) and (1, 3)? This problem can be seen undecidable as follows.
We associate a pair of morphisms h, g : Σ∗ → {2, 3}∗ with a finite set of matrices

Ma =





1 h(a) g(a)
0 10|h(a)| 0
0 0 10|g(a)|



 , a ∈ Σ,

5.4 Undecidability 91

and observe that

Ma ·Mb =





1 h(b) + h(a) · 10|h(b)| g(b) + g(a) · 10|g(b)|

0 10|h(a)|+|h(b)| 0
0 0 10|g(a)|+|g(b)|



 =





1 h(ab) g(ab)
0 10|h(ab)| 0
0 0 10|g(ab)|



 .

Extending this formula for arbitrary products, we see that, if we could solve our problem
we could solve also PCP in the case ∆ is binary. But this is no restriction since images
of letters can always be coded into a binary alphabet without changing the equality
language, for example by using the encoding of page 75.

Next we move to undecidability results in formal language theory. We associate with
an instance of PCP h, g : Σ∗ → ∆∗, Σ ∩∆ = ∅,

h : i 7−→ αi, g : i 7−→ βi,

two languages

Lh = {h(w)#wR | w ∈ Σ+} and Lg = {g(w)#wR | w ∈ Σ+},

with # /∈ Σ∪∆. Clearly, Lh and Lg are linear CF languages, for example Lh is generated
by the grammar

Gh : Sh −→ h(i)Shi | h(i)#i, for i ∈ Σ.

Further the CF grammar Gamb containing in addition to productions of Gh and Gg the
productions S → Sh | Sg generates Lh ∪ Lg. It follows that

L(Gh) ∩ L(Gg) = ∅ iff (h, g) has a solution iff Gamb is ambiguous.

Hence, we obtain:

Theorem 5.14. The following problems are undecidable:

(i) Is the intersection of two CF languages (given by grammars) empty?

(ii) Is a given CF grammar ambiguous?

We conclude with another important undecidability result.

Theorem 5.15. The equivalence problem for CF grammars is undecidable.

Proof. We reduce the emptiness problem of Turing machines to the equivalence problem

of CF grammars. The emptiness problem, i.e. the question “L(M)
?
= ∅”, is undecidable,

cf. Example 5.9 or Theorem 5.12.
With a TMM = (Q, Σ, Γ, δ, q0, ∗, F) we associate a language

Lnc = {w1#wR
2 #w3#wR

4 # · · ·#wρ
n# | n ≥ 1, wi ∈ (Γ ∪Q)∗, the sequence w1, . . . , wn

is not a sequence of configurations ofM in an accepting computation}

∪ ((Γ∗QΓ∗#)+)C ,

where # 6∈ Γ ∪Q, Γ ∩Q = ∅, wρ
n = wR

n if 2 | n , and wρ
n = wn if 2 - n.

Obviously
L(M) = ∅ iff Lnc = (Γ ∪ {#} ∪Q)∗.

5.5 Characterizations 92

Hence, the result follows if we can show that Lnc is CF. In fact, even a stronger result,
namely the undecidability of the problem, whether G generates all words over its input
alphabet, follows.

The CF-ness of Lnc is seen as follows. Clearly, w ∈ Lnc iff (at least) one of the
following conditions is true:

(i) w is of a wrong form, w 6∈ (Γ∗QΓ∗#)+;

(ii) w1 is not the initial ID, w1 6∈ q0Σ
∗;

(iii) wn is not an accepting ID, wn 6∈ Γ∗FΓ+;

(iv) for some odd i the ith word xi and the (i + 1)th word xi+1 in between markers
satisfy xi 0M xR

i+1;

(v) for some even i the ith word xi and the (i + 1)th word xi+1 in between markers
satisfy xR

i 0M xi+1.

Languages corresponding to conditions (i)–(iii) are regular. Moreover, languages
corresponding to (iv) and (v) are context–free. Indeed, a pda accepting words satisfying
(iv) can be constructed as follows. When reading an input, it nondeterministically
guesses an odd i, and when reading xi pushes into the stack xi letter by letter except
that the only occurrence of q with its neighbors, when encountered, is changed according
to the transitions ofM, and then when reading xi+1 compares it to the contents of the
stack. If they coincide pda accepts.

It follows that Lnc is a union of three regular languages and two CF languages,
proving the Theorem.

We conclude this section with a general remark.

Remark 5.8. We have been considering the four families of languages in Chomsky
Hierarchy, namely Reg, CF , CS and RE. From the point of view of decidability questions
the following can be said:

(i) All problems for Reg are decidable;

(ii) Some problems for CF are decidable and some are not;

(iii) Almost all problems for CS are undecidable;

(iv) All problems for RE are undecidable.

We have proved several results, like Theorems 2.8, 3.16, 5.15, 4.1, 4.5, 5.12, supporting
this view. However, for example (i) is not exactly true. Still the conditions (i)–(iv)
provide useful hints of the decidability of problems in formal language theory.

5.5 Characterizations

We conclude this course by stating without proofs grammatical characterizations of RE
and CS languages.

5.5 Characterizations 93

Proposition 5.16. A language L ⊆ Σ∗ is recursively enumerable iff it is generated by
a grammar.

For CS languages the characterization points out an important complexity class, cf.
page 79.

Proposition 5.17. A language L ⊆ Σ∗ is context–sensitive iff it is accepted by a TM
with endmarkers using no more space than the input requires.

Actually the use of endmarkers in Proposition 5.17 is only for the clarity of the proof.

