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The central notion of this course is a word, i.e. a finite or infinite se-
quence of symbols taken from a finite set. It follows immediately that the
mathematical research of words emphasizes two features, namely

• discreteness, and

• noncommutativity.

In addition an algorithmic point of view is often natural. It is probably
mainly the noncommutativity which makes the field very challenging: many
easily formulated problems are difficult to solve. This is connected to the
general fact that there are much weaker mathematical tools to deal with
noncommutative structures than commutative ones.

First important papers on words were written by A. Thue at the beginning
of this century, cf.[Th1,Th2]; however they became noticed only much later
and ”classical” as late as 70’s. A systematic study of words was initiated
by M.P. Schützenberger in 60’s. Two influencial papers were [LySch] and
[LeSch]. The first, and still most comprehensive, book on words appeared in
1983, cf. [Lo]. A recent survey is [CK].

Combinatorics of words is connected to many modern, as well as classical,
fields of mathematics. Connections to combinatorics - actually being part
of it - are obvious, but also connections to algebra are deep. Indeed, a
natural environment of a word is a free semigroup. More generally, the above
connections can be illustrated as follows:
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This course considers basic properties of words and (finite) sets of words,
mainly from combinatorical, but also from algebraic, point of view. In more
details topics covered will be:

• periodicity properties,

• equations on words,

• dimension properties such as

– freeness and

– defect effect,

• unavoidable regularities such as

– repetitionfree words and

– words with repetitions.

No particular prerequisities are required.
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1 Notations and basic properties

We first fix some terminology of words.

Alphabet A : A nonempty finite set of symbols, like A = {a, b}.

Word w : A sequence of symbols from A, like (a, b, a) = aba. Can be finite
or infinite (to the right); the latter are called ω-words . Empty word 1
is a sequence of zero symbols.

A∗, A+ and Aω : Sets of all finite, finite nonempty and infinite words over
A, respectively.

Catenation or product of words : Operation defined as

a1...an · b1...bm = a1...anb1...bm.

Clearly, this operation is associative and the empty word is the unit
element with respect to this operation. Consequently, A∗ = (A∗, ·) and
A+ = (A+, ·) are a monoid and a semigroup. Moreover, they are free
in the following sense - so-called free-monoid and semigroup generated
by A.

Free semigroup or monoid : A semigroup (or monoid) S is called free if it
has a subset B such that each element of S can be uniquely expressed as
a product of elements of B. Such a B is referred to as a free generating
set of S, or a base of S.

Language L over A : Any subset of A∗.

Let w, u ∈ A∗, a ∈ A and L,K ⊆ A∗.

Length of w = |w| : the total number of letters in w; |1| = 0.

|w|a : the number of a’s in w.

Alphabet of w : Alph(w) = {a | |w|a > 1}.

Factors : A word u is a factor of w (resp. left factor or a prefix, a right
factor or a suffix if there exist words x and y such that

w = xuy (resp. w = uy, w = xu).

All these are proper if they are different from w. We write u ≤ w (resp.
u < w) denoting that u is a prefix (resp. a proper prefix) of w. The
set of all prefixes of w is denoted by pref(w), while prefk(w) means
the prefix of lenght k of w (or w if |w| < k). Similarly, by suf(w),for
instance, we mean the set of suffixes of w.
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Quotients : If u ≤ w there exists the unique y such that w = uy. Such a y
is called a left quotient of w by u, and is denoted by u−1w. In the case
u is not a prefix of w u−1w is undefined, so that the function

(u,w) 7→ u−1w

becomes a well defined partial function. Similarly we define right quo-
tients wu−1.

Reverse of w : if w = a1...an with ai ∈ A, then wR = an...a1.

Factorizations : A factorization of a word w is any sequence u1, ..., un of
words such that

w = u1...un. (1)

(1) is L-factorization if all ui’s are from L. It is natural to write

L∗ = {u1...un | n ≥ 0 and ui ∈ L},

L+ = {u1...un | n ≥ 1 and ui ∈ L}.
The sets L∗ and L+ are submonoids and subsemigroups of A∗, respec-
tively, so-called sub-monoids and subsemigroups generated by L. Note
that each w in L∗ has at least one L-factorization, and if this is always
unique, then L∗ is free, and L is its base. Such an L is called a code.

Factorizations are illustrated by pictures :

or

the latter meaning that w = xz = zy = ztz.
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Operations for languages : For languages we have

• Boolean operations :

– Union L ∪K,

– Intersection L ∩K,

– Complementation Lc = A∗ \ L.

• Operations connected to the product of words :

– Product LK,

– Quotients L−1K and KL−1,

– Iterations L∗ and L+.

Here the product and quotients are defined componentwise, i.e. for ex-
ample L−1K = {l−1k | l ∈ L, k ∈ K}. Further L+ is usually called 1-free
iteration of L.

Morphism h : A∗ → B∗ (or A+ → B+) : A mapping h : A∗ → B∗

which satisfies :

h(ww′) = h(w)h(w′) for all w,w′ ∈ A∗.

In particular, it follows that

• h(1) = 1 and

• h is completely specified by the words h(a) with a ∈ A.

We call a morhphism h

• 1-free if h(a) 6= 1 for all a ∈ A,

• periodic if ∃z such that h(a) ∈ z∗ for all a ∈ A,

• uniform if |h(a)| = |h(b)| for all a, b ∈ A,

• prefix (resp. suffix) if none of the words in h(A) is a prefix (resp.
suffix) of another,

• code if h is injective.

The notion of a morphism is very important in combinatorics of words!
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Finally, we define a few more special notions of words.

Conjugates : Two words x and y are conjugates if there exist words u and
v such that

x = uv and y = vu,

or equivalently, that they are obtained from each other by a cyclic
permutation c : A∗ → A∗ defined as

{
c(1) = 1

c(w) = pref−1
1 (w)wpref1(w) for w ∈ A+,

i.e. x = ck(y) for some k. Note that in the second picture of page 2
x and y are conjugates. We denote the relation ”being conjugates” by
∼; clearly this is an equivalence relation.

Periods of w : Let w = a1...an with ai ∈ A. We say that number p is a
period of w if

ai = ai+p for i = 1, ..., n− p.

This can be illustrated as

where u =prefp(w). The smallest period of w is called the period of w,
denoted as p(w). The elements in the conjugacy class of prefp(w)(w)
are called cyclic roots of w

Example 1. A word can have several periods. For example words abababa
and aabaabbaabaa have periods 2,4,6 and 7,10,11, respectively. Moreover,
any number ≥ |w| is always a period of w.

Primitive words : We say that a word w 6= 1 is primitive if it is not a
proper integer power of any of its cyclic roots.

Theorem 1. A word w ∈ A+ is primitive iff it satisfies

∀z ∈ A∗ : [w = zn ⇒ n = 1 and hence w = z]. (2)

Proof. Clearly, (2) implies the primitiveness. To prove the converse let w be
primitive and w = zn with n ≥ 2. Let r = prefp(w)(w). We can illustrate the
situation as follows :
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Since |r| is the period of w, |z| ≥ |r|. Moreover, by primitiveness of w we
have z /∈ r∗. Consequently, comparing the prefixes of length |r| of the two
first occurrences of z we can write

r = ps = sp with p, s 6= 1.

But now by Theorem 3 (be sure that we do not make a chain conclusion!)
p and s are powers of a nonempty word, a contradiction since |r| was the
period of w.

Note that often the primitiveness of a word is defined using the condition
(2).

There exist two particularly important classes of primitive words, namely
unbordered and Lyndon words.

Unbordered words : A word w is unbordered if its smallest period is |w|.
In other words, w does not contain any nonempty word both as a
proper prefix and as a suffix. Of course, a word is bordered if it is not
unbordered.

Note that bordered words can overlap as factors of another word :

For unbordered words this is not possible.

Example 2. We give a simple construction how arbitrary word over at least
two letter alphabet can be extended to an unbordered word. Consider a word
w. Let

u = wab|w|, where a = pref1(w) and b 6= a.

The illustration is now as follows :
Now, by the choise of a and b,
- no nonempty suffix of u of length ≤ |w| is a prefix of u ;
- no prefix of u of length ≥ |w| is a suffix of u.
Consequently, u is unbordered.
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Lyndon words : These are primitive words which are the smallest in their
conjugacy class with respect to the lexicographic order, cf. page 17.

After fixing the terminology we now go to basic combinatorical results on
words.

Theorem 2. If words u,w,x and y over A satisfy uw=xy, then there exists a
unique word t such that either

i. u=xt and y=tw, or

ii. x=ut and w=ty.

Proof. By symmetry, we may assume that |u| ≥ |x|. Then since uw and xy
represent the same word over A, x is a prefix of u, i.e. there exists a t such
that u = xt. Moreover such a t is unique. We can write

xy = uw = xtw.

Again this is a identity of words, so that y = tw. Hence (i) holds.

Our next result (and it’s corollary) characterizes when two words com-
mute.

Theorem 3. Let u, v ∈ A∗. The following conditions are equivalent :

i. u and v commute, i.e. uv=vu,

ii. u and v satisfy a nontrivial relation,

iii. there exists a word t such that u, v ∈ t∗.

Proof. Since Theorem is obvious if u or v is empty we assume that this is
not the case.

(i)⇒(ii) Clear, since uv=vu is a nontrivial relation on u and v.
(ii)⇒(iii) By induction on |u| + |v|. We assume that |u| ≥ |v|; the other

case being symmetric.
If |u| = |v| = 1, then clearly the implication holds.
Now let α = β be a nontrivial relation satisfied by u and v, i.e. α, β ∈

{u, v}+ and are not identical as words over {u, v}, but

α = β in A∗. (3)

Since α and β are not identical over {u, v} we may assume, possibly by
removing common prefixes of α and β (in {u, v}∗), that α = uα1 and β = vβ1

with α1, β1 ∈ {u, v}∗.
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By (3) and Theorem 2 there exists a word w such that

u = vw. (4)

If w = 1 we are done as at the beginning. So let w 6= 1. Now let α2 and β2

be words over {v, w} obtained from α and β by replacing each occurrance
of u by the word vw. Then α2 and β2 are nonidentical over {v, w} since the
former starts with vw and the latter with vv. On the other hand, clearly
α2 = β2 in A∗, and since |v|+ |w| < |u|+ |v| the induction hypothesis implies
that there exists a word t such that v, w ∈ t∗. But, by (4), the same holds
for u and v proving (iii).

(iii)⇒(i) Obvious.

Theorem 3 has two interesting Corollaries. The first one is just a weaker
form of Theorem 3

Corollary 1. Two words u,w ∈ A∗ commute if and only if they are powers
of a same word.

The second one gives a representation result for words :

Corollary 2. For each w ∈ A+ there exists the unique primitive word ρ(w)
such that w = ρ(w)n, for some n ≥ 1.

Proof. The existence of at least one required ρ(w) is clear by Theorem 1:
If w is not primitive write w = zn with n ≥ 2. And if z is not primitive
continue at the same way until a required ρ(w) is found.

For the uniqueness assume that both ρ1 and ρ2 are primitive and w = ρn
1 =

ρm
2 with n,m ≥ 1. Then ρ1 and ρ2 satisfy a nontrivial relation, and hence

by Theorem 3, are powers of a same word. But by Theorem 1, a primitive
word can be a power of a word only in a trivial way. Hence ρ1 = ρ2, and the
Corollary 2 holds.

The word ρ(w) in Corollary 2 is called the primitive root of the word w,
and the number n is the exponent of w.

Example 3. We claim that a primitive word ρ cannot be a factor of the
square ρ2 in a nontrivial way, i.e. if ρ2 = uρv, then necessarily either u = 1
or v = 1. Assume the contrary : ρ2 = uρv with u, v 6= 1. Let p and s be
words such that us = ρ = pv. This is illustrated in the following figure:
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We have
uρv = ρρ = uspv, or equivalently ρ = sp.

On The other hand, ρ has a prefix p and a suffix s, so that we also have
ρ = ps. Consequently, ps = ρ = sp and so by Theorem 3 p and s are powers
of a same word, and therefore ρ = zn, with n ≥ 2; a contradiction since ρ is
primitive.

In Theorem 3 we characterized the commutation of words. Next we char-
acterize when two words are conjugates.

Theorem 4. Let u, v ∈ A+. The following conditions are equivalent :

i. u and v are conjugates,

ii. there exists a word z such that uz = zv,

iii. there exists words z,p and q such that

u = pq, v = qp and z ∈ p(qp)∗.

Proof. The equivalence of (i) and (iii) is obvious. So it is enough to prove
the equivalence of (ii) and (iii).

(iii)⇒(ii). If u = pq, v = qp and z = p(qp)n with n ≥ 0, then

uz = pqp(qp)n = p(qp)n+1 = (pq)n+1p = p(qp)nqp = zv.

(ii)⇒(iii). Assume that uz = zv. Then for all n

unz = un−1uz = un−1zv
ind.
=
hyp

zvn−1v = zvn.

Now choose n such that

n|u| ≥ |z| > (n− 1)|u|,
and consider the equation

unz = zvn. (5)

Then, by Theorem 2,

z = un−1p and zq = un for some words p and q.

Now
un = zq = un−1pq,

so that u = pq, and hence by (5) and above,

vn = qz = q(pq)n−1p = (qp)n,

and so v = qp. This completes the proof.
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Note that in Theorem 4 the conjugacy relation is characterized in terms
of

• equations in (ii), and

• solutions of an equation in (iii).

Next we prove a fundamental periodicity result of words often referred to
as the Periodicity Lemma of Fine and Wilf.

Theorem 5 (Fine and Wilf, 1956). Let u, v ∈ A+. Then the words u
and v are powers of a same word if and only if the words uω and vω have a
common prefix of length |u|+ |v| − gcd(|u|, |v|).

Proof. We first note how to reduce the general case to the case where
gcd(|u|, |v|) = 1. If gcd(|u|, |v|) 6= 1, say |u| = dp and |v| = dq, with
gcd(p, q) = 1, we consider u and v as elements of (Ad)+, i.e. over the alphabet
Ad, where letters are words of length d in the original alphabet. In the
larger alphabet gcd(|u|, |v|) = 1, and if we can prove the theorem there it
immediately gives the general proof.

So we assume that |u| = p and |v| = q with gcd(p, q) = 1. In one direction
the implication is trivial. To prove the converse we assume that uω and vω

have a common prefix of length p + q− 1. We assume further, by symmetry,
that p > q, and illustrate our proof in the following figure :

|u|=

|v|=

p+q-1

i0

i1

i +p (mod q)0

i +p0

i1

Here p and q denote the lengths of the words u and v, and positions of words
uω and vω are numbered from 1, ..., p + q − 1. The dashline tells how far the
words uω and vω can be compared. Finally, the arrow describes the procedure
defined as follows :
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The purpose of this procedure is to fix the values of new positions to be
the same as a given value of an initial position i0 ∈ [1, ..., q−1]. Now, by our
assumptions, the value of the position computed as follows:

i0 7−→ i0 + p 7−→ i1 ≡ i0 + p (mod q), (6)

where i1 is reduced to the interval [1, ..., q], gets the same value as that of i0.
So the procedure computes from i0 the number i1. Since gcd(p, q) = 1 the
number i1 is different from i0. If it is different from q as well the procedure
can be repeated, and the new position obtained is different from the previous
ones. Indeed, if

i0 + np ≡ i0 + mp (mod q), with n,m ∈ [0, q − 1],

then necessarily n = m, since gcd(p, q) = 1.
The crucial observation here is that if the procedure can be repeated

q− 1 times, then all the positions in the shadowed area will be covered, and
so those get the same value as the initial on i0. But this means that v is over
a unary alphabet, and consequently so is u. This would complete the proof.

But the procedure can be repeated q − 1 times if we choose i0 such that

i0 + (q − 1)p ≡ q (mod q). (7)

If this is the case, then all the values i0 + jp (mod q) for j = 0, ..., q − 2 are
different from q, which was the condition for an application of the procedure.
Clearly, such an i0 satisfying (7) can be found.

There exists an obvious reformulation of Theorem 5.

Corollary 1. If a word has two periods p and q, and if it is of length at least
p + q − gcd(p, q), then it has also a period gcd(p, q).

The formulation of Theorem 5 emphasized the fact that the considered
two words were periodic from the left end. Of course, the theorem can be
formulated still differently: a word has a factor having two periodic presen-
tations. To formulate this let us denote by l(u, v) the length of a maximal
common factor of words u and v. Then we can formulate Theorem 5 as
follows:

Corollary 2. For any two words u, v ∈ A+ we have

l(uω, vω) ≥ |u|+ |v| − gcd(|u|, |v|)⇒ ρ(u) ∼ ρ(v).
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Proof. The assumptions can be illustrated as

where |z| ≥ |u|+ |v| − gcd(|u|, |v|). Clearly, there are conjugates u1 and v1 of
u and v, respectively, such that z ≤ uω

1 , vω
1 . Hence, by Theorem 5, u1 and v1

are powers of a same word, say t, and thus also powers of the primitive word
ρ(t) = ρ. So by Corollary 2, ρ(u1) = ρ(v1) = ρ.

We need the following simple
Claim: If x is primitive and x′ ∼ x, then also x′ is primitive. The proof

of the claim is easy: If x′ = sn, then clearly c(x′) = (c(s))n, where c is the
cyclic permutation of the page 4, so that also c(x′) would be an nth power.
Hence so would be x.

From the beginning we obtain

u1 = ρn and v1 = ρm.

Hence, by the argument used to prove the claim, we conclude that

u =
−
ρ

n

and v =
=
ρ

m
,

where
−
ρ ∼ ρ ∼ =

ρ. By Claim,
−
ρ and

=
ρ are primitive so that

ρ(u) =
−
ρ ∼ =

ρ = ρ(v).

Example 4. Conjugates need not have the same smallest period, although
by Claim they have equally long primitive roots, as shown by words

abaa and aaab.

In particular, in Corollary 2 we cannot replace primitive roots by the periods.
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Example 5. Theorem 5 allows a word of length p+q−2, with gcd(p, q) = 1,
to have periods p and q without being a power of a letter. We claim that such
a word always exists, and moreover it is binary and unique up to renaming
of letters. The proof of this claim follows directly from that of Theorem 5.
In that proof we fixed the values of positions of the shorter word using the
procedure. In that proof the procedure could be applied in all but one case,
namely when the position was q. Now there are two such positions, namely
q and q − 1. In these situations the value of the new position could change.
In the proof of Theorem 5 this could happen only once. But finally the new
value would be the same as the value of the starting position i0. So in fact
all positions got the same value!

Here the change of the values can happen twice - in positions denoted by
? in the figure. Now the latter change is back to the original one, so that
actually only one change is possible. But this makes the considered word
unique and binary.

Example 6. The words of Example 5 are so-called Sturmian words. Let us
compute such a word for values q = 5 and p = 9. The length of such a word
is 12 and it is obtained by fixing values as follows :

Here the numbers tell the order in which the procedure fixes the values. The
word looked for is

(aaaba)2aa = (aaabaaaab)aaa.

And as we proved this is the only word of length 12, starting with a and
having periods 5 and 9.
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A weaker version of the Theorem of Fine and Wilf can be formulated as
follows:

Theorem 6. For any two words u, v ∈ A+ we have

z ≤ uω, vω and |z| ≥ |u|+ |v| ⇒ ρ(u) = ρ(v).

Obviously this is just a special case of Theorem 5. On the other hand,
it might be easier to remember, and actually strong enough for most of
applications. For example, Theorem 6 immediately implies the unique rep-
resentation of Corollary 2 on page 7: Indeed, if w = ρn

1 = ρm
2 , with ρ1 and

ρ2 primitive, hold, then Theorem 6 forces ρ1 and ρ2 to be powers of a same
word, and hence as primitive ones equal.

Our next goal is to compute the number pn(k) of all primitive words of
length n over a k-letter alphabet. So let |A| = k. Define

ln(k) = the number of the conjugacy classes of primitive words of length n
over A.

We note two simple facts.

Lemma 1. If words x and y are conjugates so are their primitive roots. In
particular, the exponents of x and y are equal.

Proof. Lemma 1 follows directly from Claim of p. 11 and Corollary 2 of p.
7.

Lemma 2. Let the length and the exponent of x be n and e, respectively.
Then the conjugacy class Cx of x contains exactly n

e
words.

Proof. Let x = ρe with ρ primitive. Then

c|ρ|(x) = c|ρ|(ρe) = ρe = x.

Hence Cx contains at most |ρ| = n
e

words, namely the words

x, c(x), ..., c|ρ|−1(x).

On the other hand, these are pairwise different, since if

ci(x) = cj(x) with 0 ≤ i < j ≤ |ρ| − 1, (8)

then also
ci(ρ) = cj(ρ),
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which yields the situation:

By Lemma 1, ci(ρ) is primitive. Consequently, the assumption (8) would
give a contradiction with Example 3.

From Lemmas 1 and 2 (restricted to primitive words) we conclude:

nln(k) = the number of primitive words of length n over A with |A| = k
(= pn(k)).

Note also that l1(1) = 1 and ln(1) = 0 for n ≥ 2. The above extends to

Lemma 3. kn =
∑
d|n

dld(k)

Proof. As usual the notation
∑
d|n

means the sum over all factors of n.

Now, by our representation result of words (Corollary 2 on p. 7) we have
a one-to-one correspondence:

x ∈ An ←→ (ρ, e) with ρ primitive and n = e · |ρ|.
When x ranges here all possibilities we obtain the left hand side kn of the
required identity. On the other hand, the number of different possibilities
obtained from the right hand side of the above correspondence is (by Lemma
2): ∑

e|n

n=de

dld(n) =
∑

d|n

dld(n).

In order to compute ln(k) we need so-called Möbius-function µ : N\{0} →
Z defined as:

µ(1) = 1,

µ(n) =

{
(−1)i if n is a product of i different primes,

0 otherwise.
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We still need one more general lemma, so-called Möbius Inverse Formula.

Lemma 4. Let α, β : N \ {0} → Z be functions. Then

α(n) =
∑

d|n

β(d) ,∀n ≥ 1, (9)

iff

β(n) =
∑

d|n

µ(d)α(
n

d
) ,∀n ≥ 1. (10)

Proof. Let S be the set of functions N \ {0} → Z. Define a binary operation
∗ by the condition:

(f ∗ g)(n) =
∑

n=de

f(d)g(e).

Clearly, ∗ is well defined, and moreover comutative and associative (verify!).
The function 1 defined by

1(1) = 1,

1(n) = 0 for n > 1,

is the unit element:

(1 ∗ f)(n) =
∑

n=de

1(d)f(
n

d
) = f(n).

It follows that (S, ∗) is a commutative monoid.
Let τ be the constant function:

τ(n) = 1 ,∀n ≥ 1.

We claim that
τ ∗ µ = 1. (11)

If n = 1, then (τ ∗ µ)(n) = (τ ∗ µ)(1) = τ(1)µ(1) = 1. For the general case
let n = pk1

1 · · · pkm
m be the canonical representation of n. Then

µ(d) 6= 0 iff d = pl1
1 · · · plm

m with each lj = 0 or 1.

If this is the case, then µ(d) = (−1)t, where t =
m∑

j=1

lj. Clearly, for a fixed t,

there exist
(

m
t

)
different such choices for d. So we can compute:

(τ ∗ µ)(n) =
∑

n=ed

τ(e)µ(
n

e
) =

∑

d|n

µ(d)

=
m∑

t=0

(−1)t

(
m

t

)
=

m∑

t=0

(
m

t

)
(−1)t1m−t = (−1 + 1)m = 0.
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So formula (11) has been proved.
Now, assuming (9) we conclude from the definition of τ that

α(n) =
∑

d|n

β(d) =
∑

n=ed

τ(e)β(d) = (τ ∗ β)(n),

in other words, that
α = τ ∗ β.

But this implies that

µ ∗ α = µ ∗ (τ ∗ β) = (µ ∗ τ) ∗ β = 1 ∗ β = β,

which is just a reformulation of (10). The reverse implication is exactly
similar proving Lemma 4.

Now, we are ready for our goal.

Theorem 7. The number pn(k) of primitive words of length n over a k-letter
alphabet is

∑
d|n

µ(n
d
) · kd.

Proof. As we noted on page 14

pn(k) = nln(k),

where, by Lemma 3, ln(k) satisfies

α(n) = kn =
∑

d|n

dld(k).

Finally, Lemma 4 allows to compute:

β(n) = nln(k) =
∑

d|n

µ(d)k
n
d =

∑

d|n

µ(
n

d
) · kd.

Example 7. Theorem 7 allows to show that asymptotically ”almost all”
words are primitive, namely that, cf. Exc.,

lim
n→∞

|{w ∈ An| w is primitive}|
|{w ∈ A∗| |w| = n}| = 1.
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As the last topic of this chapter we consider an important subclass of
primitive words, namely so-called Lyndon words. In order to define these we
need some terminology.

In many cases it is important to consider all words over A in some or-
der, i.e. to define total ordering of A∗. Such an ordering can be defined in
many different ways - two particularly important ones are lexicographic and
alphabetic orderings. These are obtained by

• assuming a total ordering of A, i.e. of letters, and

• extending it to all words.

Assume that alphabet A is totally ordered by ≺, i.e. for each two letters
a 6= b either a ≺ b or b ≺ a. Further for words u and v let u ∧ v denote the
maximal common prefix of u and v. Then we extend the total ordering ≺ of
A to lexicographic ordering ≺l and alphabetic ordering ≺a of A∗ by setting

u ≺l v iff u−1v ∈ A+ or pref1((u ∧ v)−1u) ≺ pref1((u ∧ v)−1v)

and
u ≺a v iff |u| < |v| or |u| = |v| and u ≺l v.

Clearly, both ≺l and ≺a are total orderings on A∗: For each pair (u, v)
of words one of the relations u = v, u ≺ v or v ≺ u hold (where we have
omitted the indices l and a). We write u � v iff u = v or u ≺ v. It is also
worth noting that ≺l and ≺a coincide on words of equal lengths.

The definition of the lexicographic ordering can be illustrated as follows :

i.e. either u is a proper prefix of v or after the maximal common prefix of u
and v u continues with a ”smaller” letter. In particular, we have

u < v ⇒ u ≺l v,

i.e. the lexicographic ordering is an extension of the relation of ”being a
proper prefix”.

17



For now on we concentrate on lexicographic ordering and denote it simply
by ≺. We have the following simple result.

Lemma 5. For all words u,v,w and z we have:

i. u ≺ v ⇔ wu ≺ wv,

ii. if v /∈ uA∗, then : u ≺ v ⇒ uw ≺ vz.

Proof. (i) Obvious (from the illustration of the relation u ≺l v).
(ii) As above. Indeed, if we have the second alternative in that illustration,
the words can be extended arbitrarily preserving the relation.

Now, a word w ∈ A+ is Lyndon word if

i. w is primitive, and

ii. w is minimal in its conjugacy class with respect to the lexicographic
ordering, i.e. satisfies:

∀u, v ∈ A+ : w = uv ⇒ w ≺ vu.

Note that our earlier number ln(k) gives the number of Lyndon words of
length n. Let Ly denote the set of all Lyndon words (over our fixed alphabet
A).

Next we prove two characterizations of Lyndon words.

Theorem 8. A word w ∈ A+ is Lyndon word if and only if it is strictly
smaller than any of its proper suffices, i.e.

w ∈ Ly ⇔ [∀v ∈ A+, w ∈ A+v ⇒ w ≺ v].

Proof. ⇒. Let w ∈ Ly and w = uv with u, v ∈ A+. We first show that v is
not a prefix of w. Assume the contrary:

w = vt with t ∈ A+.

Then we have
uv = w = vt,

so that, by Theorem 4,

u = xy, t = yx and v = (xy)ix with i ≥ 0 and x, y ∈ A∗.

Consequently,
w = (xy)i+1x.
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If here x = 1, then since v 6= 1, necessarily i ≥ 1. But then w would not
be primitive.

So we may assume that x 6= 1. Now since w is a Lyndon word we have

w = (xy)i+1x ≺ x(xy)i+1.

This, by (i) of Lemma 5, yields

(yx)i+1 ≺ (xy)i+1,

and further, by (ii) of Lemma 5, the relation

(yx)i+1x ≺ (xy)i+1x = w.

This, however, is a contradiction with the fact w ∈ Ly.
So we have proved that w /∈ vA∗. Now, if we would have

v ≺ uv = w, (12)

then by (ii) of Lemma 5, we would also have vu ≺ uv = w, a contradiction
since w ∈ Ly. Hence, (12) cannot hold as was to be proved.
⇐. So we assume that w is smaller than any of its proper sufficies. Write

w = uv, where u, v ∈ A+. Then we have

uv = w ≺ v ≺ vu,

showing that w is a Lyndon word, since by assumption it is also primitive.

Our second characterization is as follows.

Theorem 9. A word w ∈ A+ is a Lyndon word if and only if w ∈ A or there
exist Lyndon words l and m such that w = lm with l ≺ m.

Proof. ⇐. Since A ⊆ Ly we may assume that w = lm with l ≺ m. First we
prove that lm ≺ m.

If m /∈ lA∗, then this follows from (ii) of Lemma 5 and the fact l ≺ m.
If, on the other hand, m = lm′, then by Theorem 8 m ≺ m′, and so by (i) of
Lemma 5, lm ≺ lm′ = m.

Next we show that lm is smaller than any of its proper sufficies, which
by Theorem 8 means that lm is a Lyndon word. There are two alternatives:

First if v 6= 1 is a suffix of m, then since m is a Lyndon word we conclude
from above that

lm ≺ m � v.
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Second if v = v′m, where v′ is a proper suffix of l, we obtain, since also l
is a Lyndon word, that l ≺ v′, and so by (ii) of Lemma 5, also lm ≺ v′m = v.

So in all cases lm ≺ v, proving the implication ⇐.
⇒. Let w be a Lyndon word. Further we may assume that w /∈ A. Let

m be the longest proper suffix of w such that m is a Lyndon word. Clearly,
such a suffix exits since always a letter is a Lyndon word. We set

w = lm.

If l ∈ A we are done: l ≺ lm ≺ m, where the latter relation holds by Theorem
8. So we assume that l /∈ A and will prove that l ∈ Ly.

Consider an arbitrary proper suffix v of l. Then, by the choice of m, the
word vm /∈ Ly. Hence Theorem 8 guarantees the existence of a proper suffix
t of vm such that t ≺ vm. If now

v ≺ t,

then
v ≺ t ≺ vm,

so that there exists a word s 6= 1 such that

t = vs and s ≺ m.

But this means, since t is a proper suffix of vm, that s is a proper suffix of
m with s ≺ m, a contradiction to the fact that m ∈ Ly (Theorem 8).

It follows that necessarily
t � v,

and so
l ≺ lm ≺ t � v,

where the second inequality follows again from Theorem 8.
Now, since v was an arbitrary suffix of l, we conclude, again from Theorem

8, that l is a Lyndon word.
To complete the proof we have to prove that l ≺ m. This, however, is a

direct consequence of Theorem 8 and the fact that lm ∈ Ly.

Theorem 10 (Lyndon, 1955). Each word w ∈ A+ can be expressed
uniquely as a product of nonincreasing Lyndon words:

w = l1...ln with li ∈ Ly and ln � ln−1 � ... � l1.
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Proof. Let w ∈ A+. Since letters are Lyndon words, w has a representation
as a product of Lyndon words. Consider now the representation

w = l1...ln with li ∈ Ly and n is minimal.

If now, for some i, li ≺ li+1, then by Theorem 9 lili+1 is a Lyndon word,
and so n above is not minimal. Hence, w has at least once required repre-
sentation.

To prove the uniqueness let

l1...ln = w = l′1...l
′
m

where li, l
′
j ∈ Ly and ln � ln−1 � ... � l1 and l′m � l′m−1 � ... � l′1. Assume

now that, for example, l′1 is a proper prefix of l1, i.e.

l1 = l′1...l
′
iu with u � l′i+1.

Then, by Theorem 8,
l1 ≺ u � l′i+1 � l′1 ≺ l1.

This, however, is a contradiction, so that necessarily l1 = l′1, and hence
inductively n = m and li = l′i for i = 1, ..., n.

We note that Lyndon words are used in several considerations in algebra.
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2 Basics on equations

In this section we consider some basic properties of word equations, including
methods of solving those. Implicitly some such methods have already been
used in the previous section. It has to be emphasized that there does not
exist any general method to solve a given word equation. The difficultiness of
the probles is supported by the fact that probably the most important result
on words is so-called Makanin’s algorithm which gives (only!) an algorithm
to decide whether a given equation has a solution.

Let us fix some terminology. Let A be a finite alphabet, and X a finite
set of unknowns with A∩X = ∅. An equation with X as the set of unknowns
over A is a pair

(u, v) ∈ (A ∪X)∗ × (A ∪X)∗,

normally written as u = v. A solution of an equation u = v is a morphism
h : (X ∪ A)∗ → A∗ satisfying

h(u) = h(v) and h(a) = a for a ∈ A,

i.e. identifying u and v. The set of all solutions of an equation u = v is
denoted by Sol(u = v). Obviously, these notions extend in a natural way to
(not necessarily finite) systems of equations.

In above we allow equations to contain constants. An equation u = v is
constant-free if u, v ∈ X∗. Let E and E ′ be two systems of equations (with
the same finite set of unknowns). We say that E and E ′ are

equivalent if Sol(E) = Sol(E ′).

Further we say that E is independent if for each u = v ∈ E there exists a
solution h in Sol(u = v)\Sol(E \ {u = v}). Finally, we call an equation u = v
reduced if pref1(u) 6=pref1(v) and last1(u) 6=last1(v).

Note that a solution of an equation is an |X|-tuple of words over A. Hence
we are solving equations in the free monoid A∗. Sometimes, however, it is
interesting to solve these in a free semigroup A+, i.e. by requiring that h is
1-free.

Example 1. Consider equations

e1 : xy = yx and e2 : xxyyxx = yyxyxyy.

By Theorem 3, both of those have only periodic solutions, i.e. x, y ∈ t∗ for
some t. However, they are not equivalent since

Sol(e1) = {(tn, tm)|t ∈ A∗; n,m ≥ 0},
Sol(e2) = {(t3n, t2n)|t ∈ A∗; n ≥ 0}.
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Example 2. Equations

xz = zy and xz2 = z2x

are equivalent. This was shown in the proof of Theorem 4 and Exc. 2/III.

Example 3. As we have seen equations can be used to characterize properties
of words:

x ∈ (ab)∗ ⇔ xab = abx

x and y commute ⇔ xy = yx

x and y are conjugates ⇔ xz = zy ⇔
{

x = pq

y = qp
.

In the last characterization this is by using additional unknowns. Very little is
known which properties of words are expressable in this way as components
of solutions of an equation. In particular to show that something is not
expressable seems to be very difficult.

Next we introduce some methods to solve equations.
I. Length argument. Comparing the lengths of different sides of an equa-

tion (or a system of equations) we obtain a linear equation (or a linear system
of equations) on numbers, which leads to potential solutions. This method
gives for example the solution of e2 in Example 1. Sometimes length argu-
ment can be used to preficies or sufficies of the equation:

xyyx = uvvu⇔
{

xy = uv

yx = vu
.

Indeed, here the middle of both sides can be detected by the length argument,
and the first halves of the equations must coincide.

II. Splitting of an equation. As above sometimes equation can be splitted
into several equations. A criterium for splitting is often some form of the
length argument, but might be also the fact some words are known to match.
For example, if we know that

• x is unbordered, and

• uxv = yxz with |u|, |v|, |y|, |z| ≤ |x|,
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then necessarily u = y and v = z. Also Example 2 might be useful here.
III. Elimination of the leftmost (or rightmost) unknown, sometimes re-

ferred to as Levi’s Lemma or Neilsen transformation. This method, which
we have already used several times, is based on Theorem 1: If we have

xα = yβ with α, β ∈ {X ∪ A}∗

we write
x = yt (or y = xt),

and substitute this to the original equations to get

ytα = yβ ⇔ tα = β.

The hope is that the new equation is ”simpler”, and thus leads to a solution.
This, however, need not be the case, since when substituting x this has to be
done in everywhere in α and β so that the total length of the equation may
grow. Note also that the above method means a change of X:

X 7−→ X ∪ {t} \ {x}.
IV. Use of already known equations. Methods II and III lead to new equa-

tions, for which the solutions might be already known. Such basic equations
are the commutation xy = yx, or the conjugacy xz = zy, or also the use of
Fine and Wilf Theorem to conclude the periodicity.

Example 4. Consider the pair

{
xy = uv

yx = vu
from the previous page. The

method III yields
x = ut (or u = tx)

which implies that
v = ty and yut = tyu.

Now, the latter condition means that t and yu commute, i.e. we can write

t = (αβ)k, y = (αβ)iα and u = β(αβ)j ,

where α, β ∈ A∗ and i, j, k ≥ 0. This leads to the general solution




x = β(αβ)j+k

y = (αβ)iα

u = β(αβ)j

v = (αβ)k+iα

or





x = β(αβ)j

y = (αβ)i+kα

u = β(αβ)j+k

v = (αβ)iα

,

where i, j, k ≥ 0 and α, β ∈ A∗. Of course, here the second of solutions comes
from the symmetric case.
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Example 5. Let us show that the equation

x2y2 = z2 (1)

has only periodic solutions, i.e. ρ(x) = ρ(y) = ρ(z) (if x, y, z 6= 1). As-
sume that (x, y, z) is a solution. Now, taking a suitable conjugacy in (1) we
conclude that there exists z′ such that

z′ ∼ z and z′2 = xy2x.

But then by the length argument xy = z′ = yx so that x and y are powers
of a word. Therefore applying Fine and Wilf Theorem (or even its weaker
form) to (1) we obtain the required claim.

The claim can be extended to the implication:

xnym = zk with n,m, k ≥ 2⇒ ∃t : x, y, z ∈ t∗.

Note how simple our proof of the speacial case was!

In Example 4 the general solution of an equation xyyx = uvvu was ex-
pressed using parametric words, i.e. expression containing

• word parameters α and β, and

• integer parameters i, j and k.

Here, as in general in constant-free equations, the word parameters can be
fixed to be any word over A. In the case of equations with constants, of
course, values of unknowns in solutions might be fixed words (as in Example
1), or for example such that they start with a certain symbol.

Unfortunately, it can be proved that a general solution of a constant free
equation need not have a finite expression using parametric words. In fact,
even as simple equation as xyz = ztx is such!

Our next goal is to show that any Boolean combination of equations can
be transformed into a single equation, having often more unknowns, such
that the solution sets restricted to the set of original unknowns coincide. So
for equations u = v and u′ = v′ we have to consider ”solutions” of

conjunction : u = v and u′ = v′,

disjunction : u = v or u′ = v′, and

inequation : u 6= v.

25



Obviously these solution sets can be formally defined as:

• Sol(u = v ∧ u′ = v′) =Sol(u = v)∩Sol(u′ = v′)

• Sol(u = v ∨ u′ = v′) =Sol(u = v)∪Sol(u′ = v′)

• Sol(u 6= v) = A∗ × A∗\Sol(u = v).

In these considerations we assume that |A| ≥ 2. We start with a simple
result.

Theorem 11. Each pair of equations is equivalent to a single equation.

Proof. Consider equations u = v and u′ = v′. We claim that

{
u = v

u′ = v′
⇔ uau′ubu′ = vav′vbv′,

where a and b are two different constants of A. Obviously if the left hand
side holds so does the right one. Conversily, assume that

uau′ubu′ = vav′vbv′.

Now considering the lengths of both sides of this equality we can specify the
middle point and hence split the equality to the pair

{
uau′ = vav′

ubu′ = vbv′
.

If here, for example, u would be longer than v we would have

u = va... = vb...

which is impossible. Therefore u = v and u′ = v′ as required.

It is worth noting that here we do not need any new unknowns. So we
have

Corollary 1. Each finite system of equations is equivalent to a single equa-
tion.
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In the other two results we have to introduce new unknowns. Let us
continue with the inequation.

For any two words α, β ∈ A∗ we have

α 6= β ⇔ ∃a ∈ A, t ∈ A∗ : α = βat,

∃a ∈ A, t ∈ A∗ : β = αat, or

∃a, b ∈ A, t, r, s ∈ A∗ : α = tar, β = tbs, a 6= b.

This guides us to associate each inequation u 6= v, where u, v ∈ {X ∪ A}∗,
with the formula

F(u, v) = (
∨

a∈A

u = vaz) ∨ (
∨

a∈A

v = uaz) ∨ (
∨

a,b∈A

a6=b

u = zaz′ ∨ v = zbz′),

where z, z′ and z′′ are new unknowns. By Theorem 11, we can transform
F(u, v) into the form

n∨

i=1

(ui = vi) with each ui, vi ∈ (X ∪ {z, z′, z′′} ∪ A)∗.

It follows from the construcion that for any values of the unknowns X we
have

u 6= v iff ∃i,∃z, z′, z′′ ∈ A∗ : ui = vi.

So we can formulate.

Theorem 12. For each inequation u 6= v with unknowns X there exists
a finite set of equations ui = vi, where i = 1, ..., N , with unknowns X ∪
{z, z′, z′′} such that

s is a solution of u 6= v iff
∃z, z′, z′′ ∈ A∗ such that (s, z, z′, z′′) is a solution of ui = vi for some

i = 1, ..., N .

Finally we reduce a disjunction of two equations into one equation.

Theorem 13. For any pair u = v and u′ = v′ of equations with unknowns
X there exists an equation x = y over unknowns X ∪ {z, z ′} such that

s is a solution of u = v or u′ = v′ iff
∃z, z′ ∈ A∗ such that (s, z, z′) is a solution of x = y.

Proof. We start with two small reduction steps. Since clearly

u = v ∨ u′ = v′ ⇔ uv′ = vv′ ∨ vu′ = vv′

27



we may assume that v = v′, i.e. the pair is of the form

u = v ∨ v = u′.

We can also assume that u 6= u′ since otherwise the claim is trivial.
We associate to a word α a word

< α >= αaαb, with a 6= b.

First we note that for each α the period of < α > is longer, than half of
it’s length, in particular < α > is primitive, cf. Excercises. Now, the result
is a consequence of the following equivalence:

u = v or u′ = v ⇔ ∃z, z′ : w = zqz′, (2)

where
q =< uu′ >2 v < uu′ >2

and
w =< uu′ >2 u < uu′ >2 u′ < uu′ >2 .

Proof of Equivalence (2). ⇒. If u = v then we can choose z = 1 and
z′ = u′ < uu′ >2 and if u′ = v then we can choose z =< uu′ >2 u and z′ = 1.
⇐. First, since < uu′ > is primitive it occurs inside the word < uu′ >2

in exactly two places: as a prefix and as a suffix. Second, the word < uu′ >2

cannot occur in < uu′ > u < uu′ > or in < uu′ > u′ < uu′ > since < uu′ >
is longer than both u and u′, and the period of < uu′ > is longer than half
of its length. From these two facts we see that either z = 1 or z ′ = 1 and so
u = v or u′ = v.

We summarize results of Theorems 11-13 as follows.

Theorem 14. For each Boolean combination B of equations with unknowns
X we can construct a single equation E with unknowns X ∪X ′ such that

Sol(B) = Sol(E|X),

where Sol(B) denotes the set of all solutions of B and Sol(E|X) the set of all
solutions of E restricted to unknowns X.
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The above results provide useful tools to show that some properties of
words are expressable as solutions of certain equations, or more precisely, as
values of some components of solutions of equations. We take a few examples:

Example 6. Following properties are easy to express:

”y is a prefix of x” : x = yz.

”y is a proper prefix of x” : x = yz and z 6= 1, or x = yz and
∨

a∈A

z = at.

”x contains a square as a factor” : x = yz2w.

”x is imprimitive” : xy = yx and x < y, i.e. xy = yx and x = yz and
z 6= 1.

We can also easily force two unknowns x and y

”to be powers of a word” : xy = yx

”to be unequal” : x 6= y

by adding the above formulas
On the other hand, it seems to be not known whether, for example,

properties ”x is primitive” or ”x ∈ {a, b}∗, with {a, b} ⊂ A, are expressable.

We conclude this section by considering an algorithmic problem of de-
ciding whether a given equation has any solution. As we already noted this
problem is decidable, as shown by Makanin 1976. However, the algorithm
is very complicated. Note that for constant-free equations the problem is
trivial since such an equation has always a solution, where all unknowns are
equal to 1. Note also that a given equation need not have any solution as
shown by encoding the properties ”x starts with a” and ”x starts with b”
into one equation:

x = az and x = by ⇔ xaxxbx = azabyazbby.

We present a solution for the above algorithmic problem in a non-trivial
case, namely in the case the equation contains each unknown at most twice.

Let
xu = yv with x, y ∈ X ∪ A, u, v ∈ (X ∪ A)∗ (3)

be an equation. We intend to solve it by applying exhaustively Levi’s Lemma,
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i.e method III: We have three possibilities illustrated as:

(1)

where x′ (resp. y′) is a new unknown and new equations containing u′ and
v′ are obtained from the original one by substituting x = yx′ (or x = y or
y = xy′). So what was done here is that the set X of unknowns is changed
to

(X \ {x}) ∪ {x′}, X \ {x} or (X \ {y}) ∪ {y′}.
Note that the middle case is actually included in the others, but ”needed for
termination”.

Since in (1) we only replace an unknown by another (or identify it with
another) we prefer not to rename it. Accordingly we write (1) in the form:

(2)

Next we note that
xu = yv has a solution with |x| ≥ |y| iff
u′ = v′ has a solution.

Moreover, from any solution of u′ = v′ a solution of u = v with |x| ≥ |y| is
obtained by changing the x-component to yx. Consequently, all solutions of
the equation u = v are obtained by finding all solutions on leaves of graph
(2).

In the case y ∈ A, say y = a, the graph (2) is as follows:
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Let us take two examples.

Example 7. Consider the equation ax = xa. Now the above method leads
to the following finite graph

On the two rightmost branches we
end up with an identity, so solutions are
found. On the leftmost branch we have
returned to the original equation. Hence
all solutions are found by repeating the
leftmost branch a finite number of times,
and then terminating on the other branches. Hence, indeed the general so-
lution is x ∈ a∗.

Example 8. The equation xzy = ytx (which was the one having no fi-
nite expression for the general solution using parametric words) leads to the
graph:

This graph, which is now finite, describes all solutions of the equation xzy =
ytx. Indeed, they are obtained by solving the conjugacy equation, fixing some
unknowns to be empty and applying Levi’s Lemma in the reverse order. for
example, starting from the leftmost leaf of the bottom line we found the
following solutions (underlined below):

(x, y, z, t) =(pq, qpq, qp, t)→ (pq, qpq, tqp, t)→
(pq, qpq, tqp, pqt)→ (qpqpq, qpq, tqp, pqt)→2

(qpqpqtqpqpq, qpq, tqp, pqt)→2 .
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Above considerations yield easily:

Theorem 15. It is algorithmically decidable whether a given equation con-
taining each unknown at most twice has a solution.

Proof. Let xu = yv be an equation of the above form. Let us consider the
operations of (1). We claim that the total length of the equation cannot
increase:

(i) If we identify x = y, then the length reduces by two.
(ii) If we set x = yx, then

• the x at the beginning of u remains as x;

• the y at the beginning of v is cancelled;

• the potential other occurrance of x is replaced by xy; while

• all other occurrances of symbols in u and v remain as they were.

In all cases the equation remains in the required form. This proves the claim.
But the claim means that the whole graph is finite! Hence, the existence

of a solution is reduced to check whether on some leaf of the graph we get a
solution (and not a contradiction).

It is interesting to note that if we replace the phrase ”at most twice”
in Theorem 15 by ”at most three times” we are in the general problem for
system of equations: Let u = v be an equation containing n occurrances of
x. Then let u′ = v′ be the equation obtained from u = v by replacing the
ith occurrance of x by a new unknown xi. Then we have

u = v ⇔ u′ = v′, x1 = x2, x2 = x3, ..., xn−1 = xn, xn = x1.

Doing the same for all unknowns we get the result. Finally, note that Theo-
rem 15 and its proof hold for systems of equations as well.
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3 Repetition-free words

The study of repetition-free words has been one of the central areas in com-
binatorics of words. It was initiated by A. Thue at the beginning of this
century, when he proved several basic results of the field. Repetition-free
words has a lot applications e.g. in algebra.

We start by fixing some terminology. A square is a word of the form uu,
with u 6= 1, and a cube is a word of the form uuu with u 6= 1. More generally,
a word w is a kth power if

w = uk = prefk·|u|(u
ω), with u 6= 1.

Here it is not required that k ∈ N, only that |u| · k = |w| (which requires

k to be a rational). For example, (aaab)
5

4 = aaaba. We say that a word w
contains a repetition of order k if it contains as a factor a kth or higher power
of a word.

Next we define the central notion of the repetition freeness, or actually
there are three related notions. Let k ∈ R+ and w ∈ A∗ ∪ Aω. We say that
w is

k-free, if it does not contain a repetition of order k;

k+-free, if for any k′ > k, it is k′ − free;

k−-free, if it is k-free, but not k′-free for any k′ < k.

It follows immediately that

w is k−-free ⇒ w is k-free ⇒ w is k+-free,

while the reverse implications are not true, in general. The special cases
2-free, 2+-free and 3-free are called as square-free, overlap-free and cube-free.
As an illustration let us note that

• the 2-freeness means that w does not contain a square,

• the 2+-freeness means that w can contain a square, but no factor of the
form uvuvu, with u 6= 1, and

• the 2−-freeness means that w does not contain a square, but does con-
tain, for any ε > 0, a repetition higher than 2− ε.

Now we formulate:

Thue’s Problem. Find as long as possible, preferably infinite, word
over an n-letter alphabet such that it is k-free (or k+-free or k−-free).
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Two remarkable results of Thue were:

i. There exists an infinite 2+-free word over a binary alphabet, and

ii. There exists an infinite 2-free word over a 3-letter alphabet.

Example 1. It is very easy to see that in (i) the 2+-freeness can not be
replaced by the 2-freeness. Indeed, any 2-free binary word is of length at
most 3, the words aba and bab being the maximal.

Thue’s Problem has natural commutative variants when k ∈ N. We say
that a word w contains an Abelian repetition of order k, if it contains a factor
u1...uk such that Π(u1) = Π(u2) = ... = Π(uk), where the mapping Π gives
the commutative image of a word, i.e.

Π(u) = (|u|a1
, ..., |u|an

), when A = {a1, ..., an}.

Now, a word is Abelian k-free if it does not contain an Abelian repetition of
order k, and commutative variants of Thue’s problem asks to find as long as
possible Abelian k-free word over an n-letter alphabet.

Example 2. As in Example 1, there exist only rather short words which are
Abelian 3-free in a binary alphabet, or Abelian 2-free in a 3-letter alphabet.
To find exact bounds are left as an excercise.

Now we go to solutions of Thue’s Problems. First we characterize 2+-free
words in terms of how different occurrances of factors can situate inside a
word. We note that two occurrances of a factor u of w can be

In the last case we say that w contains an overlapping factor.
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Theorem 16. Let w ∈ A+ ∪ Aω. Then the following conditions are equiva-
lent:

i. w is 2+-free;

ii. w does not contain a factor of the form avava with a ∈ A, v ∈ A∗;

iii. w does not contain an overlapping factor.

Proof. (i)⇒(ii). Obvious, since if w contains avava as a factor it contains a

repetition of order at least 2 +
1

|v| + 1
.

(ii)⇒(iii). We assume that w contains an overlapping factor u and show
that then it also contains a factor of the form avava with a ∈ A and v ∈ A∗.
But this is quite obvious, since if w = xuy = x′uy′ with |x| < |x′| < |xu| <
|x′u|, i.e. we have the illustration

then
w has a factor avava,

where a = pref1(u) and v = (pref1(u))−1pref|x′|−|x|(u).
(iii)⇒(i). Now, if w is not 2+-free it contains a repetition of order k,

with k > 2, and hence a factor u2pref1(u). This means that w contains an
overlapping factor avava where a =pref1(u) and v =pref1(u)−1u. Hence also
the third implication is proved.

Now we are ready for Thue’s construction. Consider a morphism h :
{a, b}∗ → {a, b}∗ defined by

h :

{
a 7→ ab

b 7→ ba
.

Then clearly
a = h0(a) ≤ h(a) = ab, (1)

so that (by induction)

hi(a) ≤ hi+1(a) for all i ≥ 0. (2)

Consequently, there exists the unique infinite word α ∈ {a, b}ω such that

α = lim
i→∞

hi(a) = abbabaabbaababba... (3)
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Note that for any morphism h (1), i.e. condition a ≤ h(a), implies (2),
and also (3), if only limi→∞ |hi(a)| =∞. Clearly, this is the case if

• h(a) ∈ aA+ and

• h is 1-free.

Such morphism are called prolongable. So it follows that for each prolongable
morphism h there exists the unique infinite word αh obtained by iterating h
at point a. Moreover, αh is a fixed point of h, i.e.

h(αh) = αh.

Now let us go back to the word α of (3) which is usually referred as
Thue-Morse word.We prove

Theorem 17 (Thue, 1906). There exists an infinite 2+-free word over a
binary alphabet. In particular Thue-Morse word α is such.

Proof. Based on two lemmas.

Lemma 6. Let X = {ab, ba}. If x ∈ X∗, then axa, bxb /∈ X∗.

Proof. By induction on |x|.
(i) |x| = 0. Clear since aa, bb /∈ X∗.
(ii) Assume that x ∈ X∗ with x 6= 1. Assume further that u = axa ∈ X∗

(the case bxb ∈ X∗ being symmetric). We can write

u = abx1...xr−1ba with r ≥ 1, xi ∈ X.

Set y = x1...xr−1 so that x = byb with y ∈ X∗. Hence, by induction hy-
pothesis x /∈ X∗, a contradiction. So necessarily axa /∈ X∗ proving Lemma
6.

Lemma 7. Let w ∈ {a, b}+. If h(w) has an overlapping factor so does w.

Proof. Assume that h(w) has an overlapping factor. By Theorem 16 it can
be assumed to be of the form cvcvc with c ∈ {a, b} and v ∈ {a, b}∗, that is
we can write

h(w) = xcvcvcy.

Now |cvcvc| is odd, and since h(w) ∈ {ab, ba}∗ necessarily |xy| is odd as well.
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This yields two possibilieties:

i. |x| is even, and x, cvcv, cy ∈ X∗, or

ii. |x| is odd, and xc, vcvc, y ∈ X∗.

We claim that |v| is odd. If this would not be the case, then both in (i)
and (ii) v, cvc ∈ X∗, a contradiction with Lemma 6.

Consider first case (i). Since |v| is odd, necessarily cv ∈ X∗, so that
w = rsst, where h(r) = x, h(s) = cv and h(t) = cy. Hence, by the form of h,
both t and s start with letter c. But then ssc is an overlapping factor of w.

In case (ii) accordingly vc ∈ X∗, so that w = rsst, where h(r) =
xc, h(s) = vc and h(t) = y. Now, again by the form of h, r and s end
with c, showing that css is an overlapping factor of w.

So we have proved Lemma 7.

Proof of Theorem 17 is now easy. Assume that α is not 2+-free. Hence,
by Theorem 16, it has an overlapping factor. This means that for some
i ≥ 0, hi(a) has an overlapping factor as well. Then, by Lemma 7, also
hi−1(a), and hence inductively a has an overlapping factor, a contradiction.
It follows that α is 2+-free.

Corollary 1. There exists a cube-free infinite word in the binary alphabet.

By Example 1, Theorem 17 is optimal: Squares cannot be avoided in
infinite binary words. On the other hand, as we show next, they can be
avoided in infinite ternary words.

Let A = {a, b} and B = {a, b, c}. Define a morphism δ : B∗ → A∗ by

δ :





a 7→ abb

b 7→ ab

c 7→ a

.

Then δ viewed as a mapping of Bω is a bijection Bω → (a+{b, bb})ω: Clearly,
since δ is injective. It is also surjective since any ω-word starting with a and
not containing three consecutive b’s is an image of some word over B under
δ. In particular, any cube-free binary word starting with a is an image of the
unique infinite word under δ. So there exists α ∈ {a, b, c}ω such that

δ(α) = α,

where α is the Thue-Morse word.
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Theorem 18 (Thue, 1906). There exists an infinite 2-free word over a
ternary alphabet.

Proof. Let α be the word defined above. if it would contain a square, say
uu, as a factor, then α = δ(α) would contain δ(u)δ(u)a as a factor. This,
however, is overlapping, by the form of δ, proving the theorem.

Example 3. The 2-free word α constructed above starts as

α = abcacbabcbacabcacb... .

As in the case of α, also α can be defined as a fixed point of a morphism:

α = lim
i→∞

ϕi(a),

where

ϕ :





a 7→ abc

b 7→ ac

c 7→ b

.

The method of the proof of Theorem 17 has been used to prove many
other results similar to Theorems 17 and 18. We give two such examples.

Example 4. We claim that the infinite word defined by iterating the mor-
phism

h :

{
a 7→ aba

b 7→ abb

at point a is 3−-free. Let β = limi→∞ hi(a).
First, β is not k-free for any k < 3, since

i. aab is a factor of β; and

ii. any word of the form uuu(suf1(u))−1 is mapped under h to a word of
the same form.

Second to prove that β is 3-free, a crucial observation is that words of
length two can be covered by aba and abb only in the following ways:

Using this to a prefix of length two of an assumed cube in β, it is straight-
forward to conclude that β contains smaller and smaller cubes, which is a
contradiction. The details are left as an excercise.
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Example 5. Using the above ideas, but more complicated considerations,
one can show that so-called Fibonacci word defined as

γ = lim
i→∞

F i(a) = abaababaabaababaababaabaab...,

where F is so-called Fibonacci morphism

F :

{
a 7→ ab

b 7→ a
,

is (2 + ϕ)−-free, where ϕ is the golden number
1

2
(
√

5 + 1). Note that here k

is irrational.

By Theorem 17 and Example 1, we know exactly which repetitions can be
avoided in infinite binary words. These are repetitions of order greater than
2. This motivates the following definition. For each n ≥ 2, the repetitiveness
treshold in an n-letter alphabet is a number T (n) satisfying:

i. There exists a T (n)+-free infinite word over an n-letter alphabet;

ii. Each T (n)-free word over an n-letter alphabet is finite.

It follows that if T (n) exists then it is rational, since for a irrational
number r, the notions of the r-freeness and r+-freeness coincide.

Example 6. By Theorem 18, T (3) < 2 (if exists). It indeed exists and is

equal to
7

4
, since:

i. Any 7
4
-free word over a 3-letter alphabet is shorter than 39, and

ii. the infinite word defined by iterating the morphism

h :





a 7→ abcacbcabcbacbcacba

b 7→ bcabacabcacbacabacb

c 7→ cabcbabcabacbabcbac

at point a is 7
4

+
-free!

The other known values of T (n) are as follows:
|A| 2 3 4 5 6 7 8 9 10 11

T (n) 2 7
4

7
5

5
4

6
5

7
6

8
7

9
10

10
11

11
12

max(n) 3 38 122 6 7 8 9 10 11 12
Here max(n) tells the length of the maximal T (n)-free word in an n- letter

alphabet. It is conjectured that for n ≥ 12 T (n) =
n

n + 1
.
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As we saw repetition-free infinite words can be constructed by iterating
a morphism, and this is by far the most commonly used method to define
those. However, not all repetition-free infinite words can be obtained this
way - as we shall see in a moment.

Clearly, a sufficient condition for a prolongable morphism h to define a
k-free (resp. k+- or k−-free) infinite word, when iterated at a point a, is that
it itself is k-free (resp. k+- or k−-free ) in the following sense:

whenever w ∈ A+ is k-free (resp. k+- or k−-free) so is h(w). This leads
to the floowing natural problem:

Given a morphism decide whether it is repetition-free of a certain kind.
We shall give a solution for a special case of this problem in our next

result. But before that we state a few central results known on this problem.

I. It is decidable whether a given morphism is 2-free. This follows, for
example, from the next characterization of 2-free morphisms (Crochemore
TCS, vol. 18, No.2, 1982):

II. A morphism h is 2-free iff it is so on all words of length

t(h) = (M(h)− 3)/m(h),

where M(h) = max{|h(a)||a ∈ A} and m(h) = min{|h(a)||a ∈ A}. More-
over, if |A| = 3, then the above number t(h) can be replaced by a constant
5.

III. On the other hand, it is not known any algorithm to decide whether
a given morphism h

• is 3-free, or

• more generally, k-free for a given k ∈ N.

IV. Finally, 2+-free morphisms over a binary alphabet are completely
characterized: They are of the forms T n or T n ◦ µ, where T is a Thue-Morse
morphism and µ is the permutation a 7→ b and b 7→ a.

Next we prove.

Theorem 19. A uniform morphism h : A∗ → A∗ is 2-free iff it is so on
2-free words of length at most 3.

Proof. ”⇒”. Trivial.
”⇐”. Assume that h is uniform, i.e. |h(a)| = |h(b)| for all a, b ∈ A, and

that h(w) is 2-free whenever |w| ≤ 3 and w is 2-free. We first note that
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• h is 1-free, and

• h is a prefix and a suffix (since otherwise we could have h(ab) =
h(a)h(b) = h(a)h(a)u, for example).

Assume that w is 2-free and of the minimal length such that

h(w) = xttz′.

This can be illustrated as:

By our assumption w′ 6= 1, and hence, by the uniformity, |h(a)| < |xt| and
|h(c)| < |tz′| so that we can write

x′h(u)y = t = y′h(v)z where h(b) = yy′ with b ∈ A.

There are two cases.
I. |x′| = |y′|. Now necessarily x′ = y′, h(u) = h(v) and y = z. Therefore

h(abc) = xx′yy′zz′ = x(x′y)2z′

meaning that abc is not 2-free, i.e. either a = b or b = c. Further since
h(u) = h(v) and h is injective (since a prefix) necessarily u = v. All in all
this means that

w = aubvc is either auauc or aubub,

i.e. contains a square.
II. x′ = y′p with p 6= 1. Let v = dv′ with d ∈ A. Now we have

h(a) = xx′ = xy′p, with h(d) = pp′.

Consequently, h(ad) contains a square, meaning that we must have a = d.
This, in turn, means that the word h(a) has p as a border, that is as a prefix
and as a suffix.
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Now, if 2|p| ≥ |h(a)|, h(a) contains a square:

So necessarily h(a) = pqp with q 6= 1. But now q ≤ h(ub) so that

h(aub) = pqpq... ,

which contradicts with the minimality of w.
So Theorem 19 has been proved.

Note that Theorem 19 does not guarantee the existence of 2-free uniform
morphisms. It only gives an easy criterium to test whether a given uniform
morphism is 2-free.

Example 7. As an application of Theorem 19 it is not too complicated to
verify that the morphism

h6 :





a 7→ abacabcacbabcbacabacbc

b 7→ abacabcacbcabcbabcacbc

c 7→ abacabcbabcacbabcbacbc

d 7→ abacabcbabcacbcabcbabc

e 7→ abacabcbacabacbabcacbc

f 7→ abacabcbacbcacbabcacbc

is 2-free. Here |h6(a)| = 22, and it can be shown that this is the smallest
possible for uniform 2-free morphisms over a 6-letter alphabet!

From the above considerations we obtain two interesting results.

Theorem 20. For any alphabet A there exists a uniform 2-free morphism
h : A∗ → {a, b, c}∗.
Proof. For n ≤ 6, the morphism h6 restricted to an n-letter alphabet works
although is not always minimal.

For n = 12 (and hence also for n ≤ 12) the required h can be constructed
as follows. Let

h6 : A∗ → {a, b, c}∗
h′

6 : A′∗ → {a′, b′, c′}∗
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be two copies of h6 defined on disjoint alphabets. Define

g12 : (A ∪ A′)∗ → {a, b, c, a′, b′, c′}∗

by setting

g12(a) =

{
h6(a) if a ∈ A

h′
6(a) if a ∈ A′.

Now, since h6 and h′
6 are square-free, so is g12, and so is also h6 ◦ g12, where

h6 is a copy of h6 defined on {a, b, c, a′, b′, c′}∗. So we have constructed the
required h for n = 12 = 3 · 22.

Using the above procedure iterating we find the required h for any n of
the form 3 · 2k.

To state the second result we need one notation. Let SFk(n) denote the
set of all 2-free words of length n over a k-letter alphabet. Here we allow n
to be infinite. We have

Theorem 21. i. There exists a constant α > 1 such that

|SF3(n)| ≥ (1/2)αn for all n ≥ 1.

ii. SF3(∞) is nondenumerable.

Proof. (i). By Theorem 18, there exists a 2-free word w of a given length l.
Let τ : {a, b, c}∗ → {a, b, c, a, b, c}∗ be a finite substitution defined as

τ(x) = x for x ∈ {a, b, c}.

Then τ(w) contains 2l different words, namely those obtained from w by
adding ”bars” into it in all possible ways. It is also clear that

τ(w) ⊆ SF6(l).

Hence, also
h6(τ(w)) ⊆ SF3(22l),

where h6 is the morphism of Example 7. Next we recall that since h3 is 2-free
it is injective even on {a, b, c, a, b, c}. Consequently the number of square-free
words over {a, b, c} of length n = 22l is at least

2l = (2
1

22 )n.
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More generally, let n ∈ [22(l − 1), 22l]. Then, by above

|SF3(n)| ≥ 2l−1 =
1

2
· (2 1

22 )22l ≥ 1

2
· (2 1

22 )n.

From this (i) follows directly.
(ii). This follows directly from the above proof after the following obser-

vations: After choosing a fixed infinite 2-free word w we have:

• τ(w) is nondenumerable,

• τ(w) ⊆ SF3(∞),

• h6 is 3-free also on infinite words,

• h6 (as a prefix) is injective also on infinite words

Clearly, each of these points is true.

Several remarks connected to the above considerations are in order.

Remark 1. By Theorem 21 (ii) ”most” of 2-free infinite words cannot
be obtained by the standard method of iterating a morphisms, since ”the
number of morphisms is denumerable”!!

Remark 2. The number α in Theorem 21 is just a bit more than 1, and
actually |SF3(n)| does not grow very rapidly. The smallest exact values are:
3,6,12,18,30,42,60,78,108,144,...

Remark 3. Theorem 21 can be modified for 3-free words over a binary
alphabet. The proof is in principle exactly the same.

Remark 4. For 2+-free words over a binary alphabet the situation is
different:

• the number of such words of length n is O(n2), but still

• the cardinality of such infinite words is nondenumerable.

Now we move to consider Abelian repetition-free words.

Theorem 22 (Dekking, 1979). There exists an infinite Abelian 4-free
word over a binary alphabet.
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Proof. The basic idea of the proof is as in Theorem 17. We shall prove that
the infinite word ω defined by iterating the morphism

h :

{
a 7→ abb

b 7→ aaab
(4)

at point a is Abelian 4-free simply by showing that from a factor of ω which
is Abelian 4th power we can construct a shorter similar factor. The fact that
the consecutive blocks in the 4th power are only commutatively equal, and
not equal, makes the proof much more complicated. As we shall see there are
four, from (i) to (iv), special properties of h which are used in the following
considerations.

First we associate with a word u its value in the group Z5 by a morphism
µ : {a, b}∗ → Z5 defined as

µ(a) = 1 and µ(b) = 2.

This implies our first requirement for h namely that

(i) µ(h(w)) = 0 for all w ∈ {a, b}∗,
which indeed is satisfied by our morphism (4).

Now, assume that B1B2B3B4 is an Abelian 4-repetition in ω. This to-
gether with the fact that these Bi’s are covered by h-images is illustrated as
follows:

h(a1) h(α1) h(a2) h(α2) h(a3) h(α3) h(a4) h(α4) h(a5)

Formally the above means that

h(a1α1...α4a5) = v1B1B2B3B4v
′
5 with ai ∈ A and αj ∈ A∗,

where for i = 1, ..., 5 and j = 1, ..., 4

h(ai) = viv
′
i and Bj = v′

jh(αj)vj+1 with vi ∈ A∗ and v′
i ∈ A+.

Recall now that µ is a morphism so that, by (i), we obtain

µ(vj+1) = µ(Bj)− µ(h(αj))− µ(v′
j)

= µ(Bj) + µ(vj) = g + µ(vj),
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where g is a constant since Bj ’s are commutatively equal. It follows that the
sequence

µ(v1), µ(v2), µ(v3), µ(v4), µ(v5) (5)

is an arithmetic progression of length 5. We want to allow only trivial such
progressions. This guides us to require that

(ii) S = {a ∈ Z5|∃z ∈ pref{h(a), h(b)} : a = µ(z)}
is 5-progression free, i.e. does not contain an arithmetic progression of length
5, with g 6= 0. That our morphism satisfies this is easy to check:

{µ(a), µ(ab)} = {1, 3} and {µ(a), µ(aa)µ(aaa)} = {1, 2, 3} (6)

so that S = {0, 1, 2, 3}, while in Z5 any arithmetic progression of length 5,
with g 6= 0, equals to the whole Z5, as is easy to see.

Since vi’s in (5) are prefixes of h(a) and h(b) we can write (5) in the form

µ(v1) = µ(v2) = µ(v3) = µ(v4) = µ(v5).

We now return to Figure 1. We want that Bi’s, possibly after a shift,
would match with the {h(a), h(b)}-factorization of ω. This is achieved if ei-
ther the words vi or the words v′

i coincide. This motivates our next condition
required for h and µ. We say that µ is h-injective, if for all factorizations
viv

′
i ∈ {h(a), h(b)} with i = 1, ..., 5, we have

(iii) µ(v1) = µ(v2) = ... = µ(v5)⇒ v1 = v2 = ... = v5 or v′
1 = v′

2 = ... =
v′
5.

From our computations in (6) we see that the only case to be checked here
is the case when v1 = ab and v2 = aaa, and then indeed v′

1 = b = v′
2. So for

our choice of µ and h µ is h-injective.
We are almost done. We know now that the words vi or v′

i coincide.
Consequently, the four Abelian repetitions Bi can be shifted to match with
the morphism h: instead of Bi’s we now consider the commutatively equal
blocks

Di = viBiv
−1
i (or Di = v′−1

i Biv
′
i) for i = 1, ...4.

Then there are words Ci such that

h(Ci) = Di with Π(Di) = Π(Dj) for i, j = 1, ...4, (7)

where Π gives the commutative image of a word. If we would know that
Ci’s were commutatively equal the proof would be complete. Indeed, then
ω would contain a shorter Abelian 4-repetition, and hence inductively also
either aaaa or bbbb as a factor. This, however, is not the case.
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So to complete the proof we impose one more requirement for h, namely
that

(iv) M(h) =

(
|h(a)|a |h(a)|b
|h(b)|a |h(b)|b

)
is invertible.

Then, by (7), we have

Π(Ci) ·M(h) = Π(Di) for i = 1, ...4,

or equivalently that

Π(Ci) = Π(Di) ·M(h)−1 for i = 1, ..., 4.

This means that Ci’s are commutatively equal. Finally, we note that our h

indeed is invertible since M(h) =

(
1 2
3 1

)
.

So our proof is complete.

We purposely pointed out the requirements (i)-(iv) in the above proof,
since those can be used to prove - using Z7 instead of Z5 and the morphism

h :





a 7→ aabc

b 7→ bbc

c 7→ acc

that there also exists an infinite Abelian 3-free word over a 3-letter alphabet.
The problem of whether there exists an infinite Abelian 2-free word over

a 4-letter alphabet was for a long time a challenging open problem, until it
was solved by Veikko Keränen: the answer is ”yes” obtained by iterating a
uniform morphism with |h(a)| = 85!!
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Finally, we are ready to summarize the knowledge on the existence of
repetition-free words of different lengths:

order of repetition︷ ︸︸ ︷

size of
alphabet

{

word k
case 2 3
2 3 ∞ . . .
3 ∞ . . . . . .

. . . . . . . . .

Abelian k
case 2 3 4
2 3 9 ∞ . . .
3 7 ∞ . . . . . .
4 ∞ . . . . . . . . .

. . . . . . . . . . . .

Table 1. Maximal lengths of repetition-free words in different alphabets.

Next we consider briefly an extension of the repetition-freeness introduced
by Bean, Ehrenfeucht and McNulty, namely avoidability. Let X be a set of
unknowns and A our usual alphabet. A pattern is any nonempty word p in
X+. We say that a pattern p is

i. avoidable in A if there exists an infinite word w ∈ Aω such that, for
any morphism h : X+ → A+, the word h(p) is not a factor in w, and

ii. unavoidable in A otherwise.

Infinite (or finite) words w in (i) are said to avoid the pattern p .
Our next result, which is based on a simple general combinatorial trick,

states the unavoidability in terms of finite words.

Lemma 8. A pattern p is unavoidable iff for any morphism h : X+ → A+

there exist only finitely many finite words avoiding the word h(p).

Proof. ⇐. Trivial, since if p is avoidable there exists an infinite word w
avoiding h(p), for all h, and so do all finite prefixes of w.
⇒. Assume the contrary: There exist infinitely many finite words, say

w1, w2, w3, ..., avoiding h(p) for some fixed morphism h. Now since A is finite,
of the words wi infinitely many start with a common letter, say a = α1. Next
consider only those words wi which starts with α1. Repeating the argument
we conclude that, for each k ≥ 1, there exists a word αk of length k such
that

• infinitely many of words wi start with αk, and

• αj is a prefix of αk for j ≤ k.

By the second fact
α = lim

k→∞
αk

is well-defined, and by the first fact α avoids h(p), showing that p is avoidable,
a contradiction.
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Example 8. With the above notions we can reformulate our earlier results
(cf. Example 1, Theorem 17, its corollary and Theorem 18) as follows:

• pattern xx is avoidable in a ternary alphabet, but not in a binary
alphabet.

• pattern xyxyx is avoidable in a binary alphabet.

Note that, as we formulated the above statements, the avoidability depends
only on the cardinality of A, and not on A itself.

Example 9. By Example 8, the pattern xx separates the binary and ternary
alphabets. Similarly - with quite a long considerations - one can show that
the pattern

ABuDCvCAwBAzAC

separates the 3- and 4-letter alphabets, i.e. is avoidable in the latter, but not
in the former.

Interestingly, it is not known any pattern separating larger alphabets!

Example 10. Assume that both X and A are binary, i.e. we are interested
in which binary patterns are avoidable in a binary alphabet. This question
is completely solved: In the following tree all inside nodes are unavoidable,
while all leaves and all their right extensions are avoidable. Note, that in
this sense the tree covers all patterns starting with x. The numbers in Table
2 tell the length of the longest binary word avoiding the considered pattern.
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x
2
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2
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�� ee
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2
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2
yxyx x
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yxy
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Figure 2. Tree characterizing avoidable binary patterns over a binary
alphabet, cf. text.
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p x xy x
2

x
2
y xyx x

2
yx xy

2
x x

2
y
2

xyxy x
2
yx

2
x

2
yxy

max(p) 0 1 3 4 4 9 10 11 18 18 38

Table 2. The maximal lengths of word avoiding p.

The method of proving above is a standard one: In each avoidable case the
required infinite word is constructed either by iterating a suitable morphism,
or by mapping the infinite word defined by iterating a morphism by another
morphism.
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4 Applications of repetition-free words

In this section we consider a few applications of repetition-free words, as well
as some related problems.

Application I. (Unending chess; Morse, Hedlund, 1943).
Let us consider the following problem (which was a motivation to rediscover
the Thue-Morse word): Consider a game, like the chess, which allows only
finitely many different configurations; in each move the game goes from on
configuration to another. A game terminates

• when one of the players wins, or

• it is judged to be a draw.

If the draw is declared whenever a configuration repeats, then clearly each
game terminates, i.e. is finite. Hence, under this rule of draw no infinite game
is possible. Now, a natural question is: Under which ”meaningfull” rules of
draw (if any) a game can be infinite?

We use Thue-Morse word to describe such a situation. We set
Rule of draw: If after two identical sequences of configurations the game

continues with the first move of these sequences, then the game is judged to
be a draw.

We first emphasize that this rule is quite acceptable from practical points
of view: repetitions of moves are allowed once, but ”not a bit more”. And
in this case the game indeed can be infinite:

Theorem 23. Under the above rule of draw there exist infinite games.

Proof. Let α and β be two sequences of moves such that

i. both of those start and end at a same configuration;

ii. neither of those repeats any other configuration;

iii. α and β start with a different move.

We consider α and β as letters and denote by w(α, β) the infinite Thue-Morse
word over {α, β}. By (i), w(α, β) corresponds to a sequence of moves, i.e.
an instance of the game.

Claim. The moves corresponding to w(α, β) define an infinite game.
Proof of Claim. Of course we assume silently that neither of the players

wins during α or β. Then the contra assumption is: w(α, β) contains a
sequence of moves of the AApref1(A) = AAa.
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We first note that if any of the three configurations at the beginning or
at the end of either of A’s mathces with the end configuration of α or β,
then, by (ii), so do all these three configurations. But then, by (iii), w{α, β}
would not be 2+-free. So we have to analyze the following three situations
(the other being symmetric):

with x, y ∈ {α, β}, x′ ∈ {α, β}∗,

with x′, y′ ∈ {α, β}∗,

with x′, y′ ∈ {α, β}∗.

Case I. Impossible by (ii).
Case II. Again by (ii) the first occurrance of A both starts and ends at

the same place inside α. Therefore if |x′| > |y′| (resp. |y′| > |x′|), then inside
β (resp. α) there would be a repetition of a configuration. So, by (i) and (ii),
necessarily |x′| = |y′|, and hence x′ = y′, implying that pref1(α) =pref1(β), a
contradiction with (iii), or if β = α with 2+-freeness of w(α, β).

Case III. We first note, as the consequence of (ii), that
”the prefix of the first occurrance of α up to the beginning of the first A”
coincides with
”the prefix of the second occurrance of α up to the end of the second A.”
Consequently, we can shift the occurrance of the form AAa step by step to
left starting from the beginning of α. During this process the end point of
the first A inside β stays properly inside β, until at the very end when it
matches with the beginning of β. Indeed, by (i) and (ii), it cannot hit the
beginning of β before, and, by the same reason, it has to do so at the end of
the process. So it follows that

pref1(α) = pref1(A
′) = pref1(β).

where A′ is the new A obtained at the end of the process. This contradicts
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with (iii).

Note that in the above considerations we didn’t specify the initial config-
uration of the game. Hence, some details remain to be fixed if we want to
formalize the above in details for the chess, for example.

Application II (Burnside Problem). The Burnside Problem for semi-
groups asks:

Is a finitely generated semigroup, all elements of which generate finite
semigroups, itself finite?
Actually, Burnside formulated this problem in 1900 for groups. We for-
mulated it for semigroups, since repetition-free words give a very simple and
clear solution in the semigroup case. The answer is ”no” both for semigroups
and groups.

We recall that a semigroup S is any set provided with an associate oper-
ation product ·. For any subset F ⊆ S we can define a subsemigroup of S,
so-called subsemigroup of S generated by F , by taking all finite products of
F :

〈F 〉 = F ∗ = {f1 · · · fn | n≥1, fi ∈ F}.
The subsemigroup of S generated by a single element a is

〈a〉 = {ai | i ≥ 1}.

Theorem 24. The Burnside Problem for semigroups has a negative answer.

Proof. Let A = {a, b, c}. Denote by SF the set of all square-free words of A
so that

A+ \ SF =
⋃

x∈A+

A∗xxA∗.

We introduce a new element, denoted by 0, and define a semigroup

S = (SF ∪ {0} ; ·),

where the product is defined as follows: for all α, β ∈ SF we set

α · β =

{
αβ if αβ ∈ SF

0 otherwise,

α · 0 = 0 · α = 0 and 0 · 0 = 0.

Clearly, the procudt is well-defined and associative - as soon as a product of
words contains a square it becomes 0 in S. Note also that, as indicated, 0 is
the zeroelement of S.

To complete the proof we note that

53



• S is finitely generated, since 〈a, b, c〉 = S;

• each element s ∈ S generates a finite subsemigroup, since s2 = 0
always;

• S is infinite by Theorem 18.

Remark. The semigroup S in the proof of Theorem 24 was constructed
from A+ = {a, b, c}+ by

• adjoining the zero into it to obtain A+
0 = A+ ∪ {0}, and

• identifying all words containing a square into 0 to obtain S.

In more algebraic terms this means that

S = A+/ ≈ ,

where ≈ is the congruence generated by the relation ∼

xx ∼ 0 for all x ∈ A+ (1)

Intuitively, (1) identifies all squares to 0, and ≈ all words containing a square
to 0.

Application III (Tower of Hanoi Puzzle and square-free words).
Our goal is to show that the optimal solution of Tower of Hanoi Problem can
be described as a word obtained by iterating a morphism, and moreover this
word is square-free!

Recall that an instance of Tower of Hanoi Problem, THP for short, consist
of

• N disks of different sizes, say 1, ..., N ,

• three sites 1, 2 and 3.

Initially, disks are in site 1 in decreasing order. A move consists of taking a
topmost disk from one site and putting it to the top of another site. A move
is legal, if it does not put a larger disk on the top of a smaller one. The goal
of the puzzle is to describe a sequence of legal moves which moves the disks
from the initial configuration to either site 2 or 3, and again in decreasing
order.
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The puzzle with N = 5 is illustrated as follows:

Tower of Hanoi Problem.

Clearly, at any moment there exist six different moves (all of which are not
legal at any moment):

a : I → II a : II → I

b : II → III b : III → II (2)

c : III → I c : I → III

where the barred moves are inverses of the nobarred ones.
As is well known THP has a recursive solution

i. Move N − 1 topmost disks to III using II;

ii. Move the disk N from I to II;

iii. Move N − 1 disks from III to II using I.

Moreover, its complexity T(N), i.e. the number of moves, satisfies

T(N) = 2T(N − 1) + 1, T(1) = 1

so that
T(N) = 2N − 1.

Here we described a solution moving N disks from I to II using III as an
auxilary site. Similarly, a solution moving the disks from I to III using II can
be described.

The above solution, although very simple, is optimal. Indeed, any solution
has to move the disk N , and in order to be able to do that all other disks
must be in one site. Consequently, no solution can do better than (i) moving
N − 1 top disks to III using the optimal strategy, (ii) move N from I to
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II, and (iii) again by the optimal way move N − 1 disks from III to II. In
particular, this holds for the optimal algorithm, so that if its complexity is
T′(N) we have

T′(N) ≥ 2T′(N − 1) + 1, T′(1) = 1,

yielding
T′(N) ≥ 2N − 1,

as required.
In terms of our encoding (2) our optimal solution for N = 3 is the word

acbacba.

To continue we define two morphisms σ, σ on {a, b, c, a, b, c} by

σ(a) = b σ(a) = b σ(a) = c σ(a) = c

σ(b) = c σ(b) = c and σ(b) = a σ(b) = a

σ(c) = a σ(c) = a σ(c) = b σ(c) = b

Hence the morphism σ maps a symbol (either barred or unbarred) to the
next one, and σ to the previous one, respectively.

From now on we fix our optimal solution to the unique one by considering
only the solutions:

From I to II, if N is odd;
From I to III, if N is even.

With this convention let us denote by HN , for N ≥ 1, the sequence of moves
in the optimal solution. Then we have

{
H2N+1 = H2Naσ(H2N) for N ≥ 0,

H2N = H2N−1cσ(H2N−1) for N ≥ 1.
(3)

Therefore we compute

H1 = a, H2 = acb, H3 = acbacba, ...

and moreover,
Hj ≤ Hj+1 for all j,

so that
H = lim

j→∞
Hj = acbacbacbacbacb...

exists. This was the reason why we chose the optimal solutions such as we
did.
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Next, for x ∈ {a, b, c}, we denote by X either x or x. Then we can express
H as a kind of ”pseudoperiodic” word modulo 6, that is we claim that

H = (aCbAcB)ω. (4)

This indeed follows from the formulas

H2N+1 = (aCbAcB)(22N+1−2)/6a for N ≥ 0

and
H2N = (aCbAcB)(22N−4)/6aCb for N ≥ 1,

which, in turn, follows from (3) by induction (Exc.).
Now we turn to show how H is obtained as a fixed point by iterating a

morphism. We define a uniform morphism ϕ on the alphabet {a, b, c, a, b, c}
by

ϕ





a 7→ ac

b 7→ cb

c 7→ ba

and





a 7→ ac

b 7→ cb

c 7→ ba

.

Then we compute

ϕ(H0) = 1, ϕ(H1) = ac, ϕ(H2) = acbacb, ϕ(H3) = acbacbacbacbac, ...

implying that

ϕ(H0)a = H1, ϕ(H1)b = H2

ϕ(H2)a = H3, ϕ(H3)b= H4.

The above guides us to guess:

Lemma 9. For each i ≥ 0, we have

ϕ(H2i)a = H2i+1 and ϕ(H2i+1)b = H2i+2.

Proof. We first note, using our earlier notations, that for all w ∈
{a, b, c, a, b, c}∗

ϕσ(w) = σϕ(w)

and
ϕσ(w) = σϕ(w).

Since each of the mappings involved is a morphism it is enough to show these
formulas for letters, for example

ϕσ(b) = ϕ(c) = ba = σ(cb) = σϕ(b).
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Now, the lemma is proved by induction on i. For i = 0 we already verified
it. For i > 0 we compute

ϕ(H2i)a
(3)
= ϕ(H2i−1cσ(H2i−1))a

= ϕ(H2i−1)baϕ(σ(H2i−1))a

by
=

above
ϕ(H2i−1)baσ(ϕ(H2i−1)b

i.h.
= H2iaσ(H2i)

(3)
= H2i+1.

A similar computation shows the other formula.

Now we are ready for

Theorem 25. The solution H is obtained by iterating ϕ at a, that is H =
lim
i→∞

ϕi(a).

Proof. By Lemma 9, for each i ≥ 0, ϕ maps any prefix of Hi to a prefix of
Hi+1. Consequently, since a ≤ H1 we have ϕi(a) ≤ Hi+1 for all i. So the
theorem follows when i tends to ∞.

We turn to show that our optimal solution for THP is square-free, that
is does not contain any repetition (of any length) of legal moves. This result
becomes ”provable” by Theorem 25, that is by the fact that the solution can
be obtained by iterating a morphism.

Theorem 26. Our optimal solution for THP is square-free.

Proof. First we recall some terminology fixed above:

H = h0h1h2... = lim
i→∞

ϕi(a) ∈ {a, b, c, a, b, c}ω, (5)

where ϕ is defined on page 57. We start with three simple claims:
Claim I. Ignoring the bars H is periodic modulo 3, namely (abc)ω

Claim II. For each i ≥ 0,

hi =





a if i ≡ 0 (mod 6)

b if i ≡ 2 (mod 6)

c if i ≡ 4 (mod 6)

.

In particular, symbols in even positions of H are unbarred.
Claim III. H does not contain 4 consecutive unbarred symbols.
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Proofs of claims. Claims I and II follow directly from (4). To prove Claim
III assume the contrary that H contains 4 consecutive unbarred symbols, say
hihi+1hi+2hi+3. We have two cases:

”i is even”: Set i = 2k. Then, by (5) and the fact that h is uniform, we
have

ϕ(hkhk+1) = hihi+1hi+2hi+3.

Since only images of barred letters under ϕ are unbarred it follows that hk

and hk+1 are barred, a contradiction with Claim II.
”i is odd”: Now, by Claim II, hi+1 is unbarred, so that we can repeat the

argument of first case for the word hi−1hihi+1hi+2.
Proof of Theorem 26 (continued). As usual in such proofs assume that

H contains a square xx. Without loss of generality we may assume that |x|
is of minimal length, and that there exists no squares in H of length |xx|
starting earlier than xx.

Let x = x1...xn with each xi being a letter. We have three cases:
Case 1. n is odd. Then, by Claim II, the whole x is unbarred. This

contradicts with Claim III if n ≥ 3, and with Claim I and (3) if n = 1.
Case 2. n is even, and xx starts at an even position in H, i.e. n = 2m

and
xx = h2jh2j+1 . . . h2j+2m−1h2j+2m . . . h2j+4m−1.

Then, as in the proof of Claim III, we have

ϕ(hj . . . hj+m−1hj+m . . . hj+2m−1) = xx.

Now, by the uniformity of ϕ, ϕ(hj . . . hj+m−1) = ϕ(hj+m . . . hj+2m−1) = x,
and so by the injectivity of ϕ, we have hj . . . hj+m−1 = hj+m . . . hj+2m−1, a
contradiction with the minimality of x.

Case 3. n is even, and xx starts at an odd position in H. Now we can
write

qxx = qh2j+1 . . . h2j+nh2j+n+1 . . . h2j+2n,

where q = h2j. From Claim I we conclude that n ≡ 0 (mod 3), so that, by
Claim II, q = h2j+2n, and hence also q = h2j+n. Therefore (qx(q−1))2 is a
square of length |xx| and occurring in H earlier than xx, a contradiction.

So our proof is complete.

Application IV. (Free idempotent semigroup). Actually, this is not
an application of the repetition-freeness, but rather related consideration to
Application II. There, as a solution to the Burnside Problem, we defined
(algebraicly, cf. Remark on p. 54) the semigroup

S = A+ ∪ {0}/ ≈s
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where ≈s was the congruence generated by the relation

xx ∼s 0 ∀x ∈ A+.

Now we start from the idempotency relation

xx ∼i x ∀x ∈ A∗

and denote by ≈i the congruence it generates. Then we define the semigroup

I = A∗/ ≈i

referred to as the free idempotent semigroup generated by A. This was the
algebraic definition. However, as in the case of Burnside Problem we define
I in a more intuitive way as follows: Let A be a finite alphabet. We say that
two words u and v are equivalent if we can derive v from u, and vice versa,
by a finite (possibly 0) number of applications of the rules

• replace a factor x by its square xx, or

• replace a square factor xx by the word x.

Clearly, this relation, say ≡i, is an equivalence relation. Moreover, the oper-
ation defined on these equivalence classes by

[u][v] = [uv]

is well-defined, so that the set of equivalence classes of this relation forms
a semigroup, which is isomorphic to the above I (as is clear for those who
knows more about the semigroup theory).

We keep the notation I for this semigroup. According to our intuitive
definition it consists of all words over A with the operation of catenation,
but words which can be transformed to each other by applying rewrite rules
xx→ x and x → xx for factors are identified. Recall that in the semigroup
S we identified all nonsquare-free words with the zero element.

Example 1. We claim that bacbcabc = x ≡i y = bacabc. We first compute

uy = abcaca.bacabc ≡i abcacabc ≡i abcabc ≡i abc,
x = bacbcabc ≡i bacbcuy = bacbcabcacay = vy,

and

xr = bacbcabc.bcabacbcacbcbac

≡i bacbcabacbcacbcbac

≡i bacbcacbcbac

≡i bacbcbac ≡i bacbac ≡i bac.
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So that
y = bacabc ≡i xrabc = xs,

and we can conclude

x ≡i vy ≡i vyy ≡i xy ≡i xxs ≡i xs ≡i y.

Note that the numbers of rewriting steps above are 3,1,3,5,1 and 5, so alto-
gether 18, and the longest word encountered in these steps is xxs, which is
of length 34 ≥ 4 max{|x|, |y|}.

As a contrast to the Burnside semigroup S we prove

Theorem 27. For any finite alphabet A the free idempotent semigroup gen-
erated by A, say I, is finite.

Proof. Recall that Alph(w) denotes the set of all letters appearing in w. We
also note immediately

x ≡i y ⇒ Alph(x) = Alph(y).

Claim I. If Alph(y) ⊆ Alph(x), then ∃u : x ≡i xyu.
Proof is by induction on |y|. If |y| = 0, then x ≡i x (or xx). Consider

y = y′a with a ∈ A. By induction hypothesis there exists u′ such that

x ≡i xy′u′.

Now, by the assumption, a is in Alph(x), i.e. we can write x = zaz ′. Then
we can choose u = z′y′u′:

xyu = zaz′y′az′y′u′ ≡i zaz′y′u′ = xy′u′ i.h.≡i x,

proving the claim.
Next with each x ∈ A∗ we associate a quadruple

x=̂(p, a, b, q) (6)

by requiring that

Alph(p)∪̇{a} = A = Alph(q)∪̇{b}, (7)

where ∪̇ denotes the disjoint union, and p is a prefix of x and q is a suffix of
x:
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Clearly, the words pa and bq are the shortest prefix and suffix of x, respec-
tively, such that they contain all letters of x.

Claim II. if x=̂(p, a, b, q), then x ≡i pabq = x̂.
To prove Claim II let x = pay = zbq. Then we have Alph(y) ⊆ Alph(pa) =
Alph(x), so that, by Claim I,

pa ≡i payu for some u.

Similarly using the inclusion Alph(pa) ⊆ Alph(bq) and the dual form of
Claim I we obtain

bq ≡i vpabq for some v.

These identities allow to compute:

x̂ = pabq ≡i payubq = xubq = xw

and
x = zbq ≡i zvpabq = zvx̂ = tx̂.

Now we can complete the proof of Claim II:

x ≡i tx̂ ≡i tx̂x̂ ≡i xx̂ ≡i xxw ≡i xw ≡i x̂.

Now, we are ready to finish the proof of Theorem 27. This is done by
induction on |A|.

If |A| = 1, then any two nonempty words are equivalent, implying that
I consists of two elements: {1} and A∗ \ {1}. The induction step follows
from the representation (6) and Claim II: Each word x is equivalent to x̂ =
(p, a, b, q), where p and q are over a proper subalphabet of x. Hence there
exist only finitely many nonequivalent p’s and q’s, respectively, and so also
only finitely many nonequivalent x’s.

Theorem 27 deserves two remarks.

Remark 1. Based on the fact (which is not difficult to prove) that for
equivalent words x and x′ their representations (6) x̂ = (p, a, b, q) and x̂′ =
(p′, a′, b′, q′) satisfy p ≡i p′, a = a′, b = b′ and q ≡i q′ it is possible to prove
that

|I| =
n∑

k=0

(
n

k

)
ck, with ck =

k∏

i=1

(k − i + 1)2i

,
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where n = |A|, and in particular, for |A| = 0, we define |I| = 1. These
numbers grow very fast: 1,2,7,160,332381,...

Remark 2. Our considerations in Application IV are connected to the
notion of ”rewriting a word under certain rules”, cf. Example 1. Here the
rules were that x can be replaced by xx, and vice versa. Example 1 indicated
that is not easy to check whether two words are equivalent under certain
rewriting rules. As an illustration let us mention so-called word problem for
finitely generated semigroups. Assume that S is a semigroup generated by
a finite set F and satisfying relations ui = vi, for i ∈ I, where ui, vi ∈ F ∗.
Now, the word problem for S asks to decide whether two elements of S, say
x = s1 . . . sn and y = t1 . . . tm with si, tj ∈ F ∗, are the same element in S,
that is whether x can be transformed to y by using the rewriting rules ui → vi

and vi → ui, for i ∈ I, a finite number of times. One of the important results
is that the word problem (with a finite I) is algorithmically undecidable.

In our considerations of free idempotent semigroups we started from the
relation x ∼i xx, or from the rewriting rules x→ xx and xx→ x. An equally
natural starting relation would be

x2 ∼ x3 for all x ∈ A∗,

or in terms of rewriting rules

x2 → x3 and x3 → x2 for all x ∈ A∗.

As earlier, we can define a semigroup, where equivalent words under these
rules are identified. Is the semigroup finite or not?
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5 Free monoids and semigroups

We defined free monoids and semigroups already on page 1. In what follows
we concentrate with the monoid case. The results are easy to modify for
semigroups.

We recall that a monoid M is free if it has a subset B ⊆M such that

i. M = B∗, and

ii. For all n,m ≥ 0 and x1, . . . , xn, y1, . . . , ym ∈ B we have:

x1 . . . xn = y1 . . . ym ⇒ n = m and xi = yi for i = 1, . . . n.

Condition (i) means that B generates M , i.e. is a generating set of M , and
condition (ii) requires that each element of M has the unique representation
as a product of elements of B. The subset B of M satisfying (i) and (ii) is
called a base of S. Note that the identity 1 of M is never in the base.

The goal of this section is to consider first some general properties of free
monoids (in the spirit of semigroup theory), and then concentrate on free
monoids of words, i.e. free submonoids of A∗ (in the spirit of combinatorics
of words).

Let us start with a few examples.

Example 1. For any alphabet A (not only for finite ones) the monoid A∗ (or
the semigroup A+) is free with the base A. These are called the free monoid
and semigroup generated by A.

Example 2. Let X = {a, ab, ba}, Y = {a, ab, bb} and Z = {a, ab, b}. Then
X∗, Y ∗ and Z∗ are clearly monoids, and also submonoids of A∗, and moreover

• X∗ is not free since a.ba = aba = ab.a, and any subset of X∗ generating
it contains X;

• Y ∗ is free, since no word in Y + has two different Y -factorizations (which
is easy to conclude by reading w from right to left);

• Z∗ is free, since Z∗ = {a, b}∗, but not freely generated by Z.

Example 3. For any words x, y ∈ A+, with ρ(x) 6= ρ(y), the monoid {x, y}∗
is free, since, by Theorem 3, words x and y cannot satisfy a nontrivial relation.

Let M be a free monoid with a finite or countable base B, and A an
alphabet of the same cardinality than B. Then, by the definition of free
monoids, any bijection h : A → B extends in a natural way to an isomor-
phism A∗ →M . So we have
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Lemma 10. Each free monoid with a finite or infinite base is isomorphic to
a word monoid A∗.

Lemma 10 does not mean that free monoids are met only in connection
with words:

Example 4. We claim that the multiplicative monoid generated by nonneg-
ative integer matrices

A =

(
1 1
0 1

)
and B =

(
1 0
1 1

)

is free. Let M denote this monoid. Assume that

X1 . . . Xn = Y1 . . . Ym with Xi, Yj ∈ {A,B}.

If X1 = Y1, then since both A and B are invertible (over Q) we can cancel
the first members of the product and obtain

X2 . . . Xn = Y2 . . . Ym,

for which we can apply induction (on n + m) to conclude that n = m and
Xi = Yi for i = 1, . . . , n, as was to be proved.

So it remains the case X1 = A and Y1 = B (or symmetric one). Set

α =

(
a b
c d

)
= X2 . . . Xn and β =

(
a′ b′

c′ d′

)
= Y2 . . . Ym.

Then

Aα = Bβ ⇔
{

a + c = a′

c = a′ + c′
and

{
b + d = b′

d = b′ + d′

⇔
{

a = c′ = 0

c = a′
and

{
b = d′ = 0

d = b′
,

where the latter equivalence is since α and β are with non-negative entries.
Hence we concluded that a = 0, a contradiction since, by the form of A and
B, no product of those contain the zero on the left upper corner. Hence the
claim is proved.

We need a few notions. Let M be a monoid and F its generating set. We
say that F is a minimal generating set if no proper subset of F is a generating
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set of M . Further an element x of M is called indecomposable or atomic if it
cannot be expressed in the form x = yz with y, z 6= 1. Finally, we say that
M is a monoid with length, if there exists a mapping lg : M → N0 such that

lg(xy) = lg(x) + lg(y) for all x, y ∈M,

and
lg(x) = 0 iff x = 1,

where N0 is the additive monoid of nonnegative integers. We prove

Theorem 28. Each monoid M with length has the unique minimal gener-
ating set consisting of indecomposable elements of M , that is the set (M \
{1}) \ (M \ {1})2.

Proof. Clearly, the set of indecomposable elements of M coincides with F =
(M \ {1}) \ (M \ {1})2. Further, since, by definitions, each indecomposable
element is in any generating set of M , F is the unique minimal generating
set, if it is a generating set, that is if

F ∗ = M.

To prove this we first note that the inclusion F ∗ ⊆ M is trivial. The
reverse inclusion follows from the fact that all elements of M with the smallest
length are - by the definitions - in F .

So consider y ∈ M with lg(y) = n + 1. If y 6= uv for all u, v ∈ M \ {1},
then y is indecomposable and so in F . Otherwise we write y = uv with
u, v ∈ M \ {1}. Then 1 ≤ lg(u), lg(v) ≤ n, so that induction hypothesis
apply: u, v ∈ F ∗, so that also y ∈ F ∗.

This completes the proof.

Example 5. Consider the free monoid A∗ generated by A. Obviously A∗ is
a monoid with length: we can set lg(w) = |w|. Moreover, any submonoid of
A∗, say X∗ with X ⊆ A, is a monoid with length. The length function of X∗

can be chosen to be that of A∗ restricted to X∗. It is worth noting that lg
defined in this way is a morphism from A∗ onto N0, and also from X∗ into
N0.

Example 5 implies a corollary to Theorem 28.

Corollary 1. For each subset X ⊆ A∗ the monoid X∗ has the unique mini-
mal generating set (X+ \ {1}) \ (X+ \ {1})2.

As another general result we prove the following characterizatrion of free
monoids.
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Theorem 29 (Levi, 1940). A monoid M is free if and only if it satisfies
the following two conditions:

i. There exists a morphism h : M → N0 such that h−1(0) = {1};

ii. Whenever u1u2 = u3u4 with u1, u2, u3, u4 ∈ M , then one of the follow-
ing conditions holds:

• there exists u5 ∈M such that u1 = u3u5 and u5u2 = u4, or

• there exists u6 ∈M such that u1u6 = u3 and u2 = u6u4.

Proof. ⇒: Assume that M is free with the base B. We define the morphism
lg : M → N0 by the condition

lg(x)=the number of elements of B in the unique representation of x as
the product of elements of B.
Obviously lg is a well-defined morphism, and further lg−1(0) = {1}. Now
assume that u1u2 = u3u4 with ui ∈M . We write ui’s as products of elements
of B: u1 = α1 . . . αp, u2 = β1 . . . βq, u3 = γ1 . . . γs and u4 = δ1 . . . δr. Then
we have

α1 . . . αpβ1 . . . βq = γ1 . . . γsδ1 . . . δr.

Since B is the base of M the requirements (ii) follow: indeed p + q = s + r
and corresponding elements of both sides are equal, so that, for example, if
p ≥ s we can choose u5 = αs+1 . . . αp.
⇐: Now we assume that M satisfies the conditions (i) and (ii). Then, by

(i), M is a monoid with length. Set

B = (M \ {1}) \ (M \ {1})2,

so that B is exactly the set of indecomposable elements of M , and moreover
B∗ = M . We have to show that B is a free generating set of M , i.e. the
implication

x1 . . . xn = y1 . . . ym with xi, yj ∈ B ⇒ n = m and xi = yi for i = 1, . . . , n.

We may assume that n ≤ m, and will prove the implication by induction
on n. The case n = 1 follows from the definition of B. Assuming that the
implication for n < k holds we consider the relation

x1 . . . xk = y1 . . . ym with xi, yj ∈ B and k ≤ m.

Writing this in the from x1(x2 . . . xk) = y1(y2 . . . ym) we can conclude from
(ii) the existence of u such that either x1 = y1u and ux2 . . . xk = y2 . . . ym or
x1u = y1 and x2 . . . xk = uy2 . . . ym. But since x1 and y1 are indecomposable
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necessarily u = 1, so that x1 = y1 and x2 . . . xk = y2 . . . ym. Now induction
hypothesis applies and we conclude that n = m and xi = yi for i = 1, . . . , n,
as was to be proved.

Note that our basic result on words, namely Theorem 2, is a weak variant
of Theorem 29!

Now we turn to consider submonoids of a word monoid A∗, which are
called F-semigroups, and in particular free submonoids of A∗. We adjust our
terminology more traditional to combinatorics of words.

We say that a subset X ⊆ A∗ is a code if it satisfies the following condition:
For all n,m ≥ 1 and x1, . . . , xn, y1, . . . , ym ∈ X

x1 . . . xn = y1 . . . ym ⇒ n = m and xi = yi for i = 1, . . . , n. (1)

Note that (1) is just a reformulation of condition (ii) in the definition of free
monoids. Usually (1) is referred as the decoding condition. Not also that the
empty word 1 is never in a code.

Example 6. There is no need to require that a code is finite. Indeed, the
set

C∞ = {aib | i ≥ 1} ⊆ {a, b}∗

clearly satisfies condition (1), and is thus a code.

Example 7. There are three important special cases of codes. A set X is a
prefix, suffix or bifix if

• none of the words of X is a prefix is of another,

• none of the words of X is a suffix of another, and

• none of the words of X is either a prefix or a suffix

of another word in X, respectively.
Clearly, each of these special sets satisfies the decoding condition and is

thus a code. Note also that prefix codes can be illustrated as trees: paths of
the tree from the root to leaves correspond the elements of the prefix code;

for example the code X = {a, baa, bb} is illustrated as

a

�
�
�
a
A
A
Ab

�
�
�
a

A
A
Ab .

Next simple result gives connections of codes and free monoids.
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Theorem 30. Let X ⊆ A∗. Then the following conditions are equivalent:

i. X is a code,

ii. X is a free generating set, or a base, of the monoid X∗,

iii. X∗ is free and X is its minimal generating set.

Proof. (i)⇒(ii). So let X be a code. By definition of X∗, the set X generates
X∗, and, by (1), it generates X∗ freely.

(ii)⇒(iii). Now we assume that X generates X∗ freely, i.e. X generates
X∗, and each element of X∗ can be expressed as a product of elements of X
in the unique way. Then, by the definition of the freeness, X∗ is free. So by
Corollary 1 to Theorem 28 we have to show that

X = (X+ \ {1}) \ (X+ \ {1})2. (2)

Recall here that the right hand side coincides with the set of indecomposable
elements of X∗. Remember also that since X is a free generating set it does
not contain the empty word 1.

Now assume first that w ∈ X. Then w ∈ X+ \ {1}, by above, and
w /∈ (X+ \{1})2, since X is a free generating set. Second, if w ∈ (X+ \{1})\
(X+ \ {1})2, that is, is indecomposable, then w ∈ X. Hence (2) holds.

(iii)⇒(i). Now we assume that X∗ is free, and X is its minimal generating
set, i.e., by Corollary 1 to Theorem 28,

X = (X+ \ {1}) \ (X+ \ {1})2.

Since X∗ is free it has a free generating set, say Y . Since Y generates X∗,
1 /∈ Y and all elements of X are indecomposable, necessarily each w in X is
also in Y , i.e. X ⊆ Y . So since Y satisfies decoding condition (1), as a free
generating set, so does X. Hence X is a code, and our proof is complete.

Remark. Assume that X ⊆ A∗ is a code. Then X∗ is free with X as a
base, and by Lemma 10, we conclude that there exists an alphabet B, with
|B| = |X|, and an injective morphism hX : B∗ → A∗ such that hX(B) = X.
Morphism hX is called a coding morphism of X. The converse holds also: if
h : B∗ → A∗ is an injective morphism then X = h(B) is a code. We can say
that hX above encodes B∗, and that h−1

X decodes X∗.
It follows that the theory of codes is nothing but the theory of injective

morphisms B∗ → A∗. This theory is sometimes called the theory of variable
length codes as a distinction to the theory of error correcting codes. The
theory of codes was initiated by M.P.Schützenberger in 50’s.

The use of coding morphisms yields easily.
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Theorem 31. Let f : A∗ → C∗ be an injective morphism. Then

i. if X ⊆ A∗ is a code so is f(X); and

ii. if Y ⊆ C∗ is a code so is f−1(Y ).

Proof. (i). Let hX : B∗ → A∗ be a coding morphism of X. Then the
composition f ◦ hX : B∗ → C∗ is an injective morphism, and so

f ◦ hX(B) = f(X)

is a code.
(ii). Let Y ⊆ C∗ be a code and X = f−1(Y ). Now if

x1 . . . xn = y1 . . . ym with xi, yj ∈ X,

then
α(x1) . . . α(xn) = α(y1) . . . α(ym) with α(xi), α(yj) ∈ Y,

so that, since Y is a code, necessarily n = m and α(xi) = α(yi) for i =
1, . . . , n. Hence X satisfies the decoding condition.

Theorem 30 characterizes free submonoids of A∗ in terms of codes, i.e.
bases. The next theorem gives another characterization but without using
bases. We need some terminology.

We call a submonoid M of A∗ stable, right unitary or left unitary if for
all words u, v and w:

whenever u, v, uw,wv ∈M, then w ∈M, (3)

whenever u, uv ∈M, then v ∈M, (4)

whenever u, vu ∈M, then v ∈M, (5)

respectively. The implication (3) can be stated in the form

M−1M ∩MM−1 ⊆M,

or equivalently, since 1 ∈M , in the form

M−1M ∩MM−1 = M.

Further the assumption of (3) can be illustrated as
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where an arc means that ”belongs to M”. And the conclusion is that w is in
M .

Similarly, the conditions for the right and left unitary can be rewritten
as

M−1M = M and MM−1 = M.

We note the following immediate connections of the above notions:

Now we are ready for the characterizations:

Theorem 32 (Schützenberger’s criterium). A submonoid of A∗ is free
if and only if it is stable.

Proof. Let M be a stable submonoid of A∗. By Theorem 30 it is enough to
show that the minimal generating set

X = (M+ \ {1}) \ (M+ \ {1})2

of M is a code. Assume the contrary: a word w has two X-factorizations,
i.e.

w = x1 . . . xn = y1 . . . ym with xi, yj ∈ X,

where moreover, assuming w as short as possible |x1| < |y1|. Then we can
write y1 = x1z with z ∈ A+ so that

x1, y2 . . . ym, x1z, zy2 . . . ym ∈M.

Consecuently, by the stability of M , we have: z ∈ M . But then y1 = x1z ∈
X ∩ (M \ {1})2, a contradiction.

To prove the other direction let M be free and X its base. Further assume
that words u, v and w satisfy

u, v, uw,wv ∈M,
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as illustrated in Figure on page 70. We write these words as products of
elements of the base X:

u = x1 . . . xk, wv = xk+1 . . . xr,

uw = y1 . . . yl, v = yl+1 . . . ys,

where xi, yj ∈ X. Since u(wv) = (uw)v we can write

x1 . . . xkxk+1 . . . xr = y1 . . . ylyl+1 . . . ys.

Therefore, since X is a code, necessarily r = s and xi = yi for i = 1, . . . , r.
Since |uw| ≥ |u|, necessarily l ≥ k and we can write

uw = x1 . . . xkxk+1 . . . xl = uxk+1 . . . xl,

which implies that w = xk+1 . . . xl, and hence in M .
So M is stable.

The following result shows the power of Theorem 32.

Corollary 1. Any intersection of free submonoids of A∗ is free.

Proof. Let Mi be a free submonoid of A∗ for each i ∈ I. Consider

M =
⋂

i∈I

Mi.

Clearly, M is a submonoid of A∗: Indeed

• 1 ∈Mi for all i, and hence 1 ∈M ,

• if m,m′ ∈M , then m,m′ ∈Mi for all i, and hence mm′ ∈M .

It is also free by Theorem 32:

u, v, uw,wv ∈M ⇒ u, v, uw,wv ∈Mi for all i
Thm 32⇒

w ∈Mi for all i ⇒ w ∈M.

Example 8. Let M1 = {aab, aba}∗ and M2 = {a, baaba}∗. Then they are
free since sets {aab, aba} and {a, baaba} are codes, in fact even prefixies.
Consequently, M1 ∩M2 is free. However, it not finitely generated (cf. Exc),
while M1 and M2 are so.
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Example 9. The monoid M = {w ∈ A∗ | |w|a ≡ 0 (mod 2)} is both right
and left unitary. Indeed:

u, uv ∈M ⇒ |u|a and |uv|a are even ⇒
|v|a is even ⇒ v ∈M.

Further its minimal generating set is, assuming that A = {a, b},

B = {b} ∪ ab∗a.

This is a code as it must be by Theorems 30 and 32. In fact it is even a bifix
as it must be by our next result.

Theorem 32 has variants for right and left unitary monoids.

Theorem 33. A submonoid of A∗ is right (resp. left) unitary if and only
if its minimal generating set is a prefix (resp. suffix). In particular, such
monoids are free.

Proof. ⇒. Let M be a right unitary submonoid of A∗ and B its minimal
generating set. By Theorem 28

B = (M \ {1}) \ (M \ {1})2.

Consider words u and v such that u, uv ∈ B. Hence u, uv ∈M and since M
is right unitary necessarily v ∈ M . If v 6= 1, then vu ∈ B ∩ (M \ {1})2, a
contradiction. Consequently v = 1, implying that B is a prefix.
⇐. Now we assume that, with the above notations, the minimal gener-

ating set B of M is a prefix, and consider two words u, uv ∈ M = B∗. We
write

u = x1 . . . xn and uv = y1 . . . ym with xi, yj ∈ B,

and conclude the identity

x1 . . . xnv = y1 . . . ym.

Since B is a prefix necessarily x1 = y1, and so inductively xi = yi for i =
1, . . . , n, and v = yn+1 . . . ym. The last equality shows that v ∈ B∗ = M , and
therefore we have proved that M is right unitary.

The proof for left unitary submonoids is completely symmetric.

As in the case of Theorem 32 we have also now an immediate conse-
quence:

Corollary 1. Any intersection of right (resp. left) unitary submonoids of
A∗ is right unitary (resp. left unitary).
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Example 8 (Continued). Actually, by Theorem 33, the monoids M1 and
M2 in Example 8 are right unitary, i.e. their minimal generating sets are
prefixies. Hence, the minimal generating set of the monoid M1 ∩ M2 is a
prefix, but as we claimed in Example 8, not finite.

Corollaries of Theorems 32 and 33 show their algebraic usefulness. Even
a better evidence of that is given in the following so-called Defect Theorem.

In order to formulate it we need some terminology. Let X ⊆ A∗ be a
finite set. Define

FM(X) =
⋂

X⊆M⊆A∗

M is free

M.

Consequently, FM(X) is the intersection of all free submonoids of A∗ con-
taining X. By Corollary of Theorem 32, FM(X) is a free submonoid. Since
it contains X, and is contained in any free submonoid of A∗ containing X it is
the smallest free submonoid of A∗ which contains X. The minimal generating
set of FM(X) is called the free hull of X, and is denoted by X̂.

Similarly, using Corollary to Theorem 33, we can define the smallest right
unitary monoid containing X, say RUM(X), by the formula

RUM(X) =
⋂

X⊆M⊆A∗

M is right unitary

M.

Let us denote the minimal generating set of RUM(X) by X̂(p).
Now, we are ready to state Defect Theorem:

Theorem 34 (Defect Theorem). For each finite set X ⊆ A∗ its free hull

X̂ satisfies
|X̂| ≤ |X|,

and moreover, the equality holds if and only if X is a code.

Proof. If X is a code, then clearly the smallest free submonoid of A∗ con-
taining X is X∗, so that X̂ = X. Therefore |X| = |X̂|.

Consequently, to prove Theorem 34 it is enough to show:

X is not a code ⇒ |X̂| ≤ |X| − 1. (6)

This is the essential message of Theorem 34.
The proof of this is based on the following claim:
Claim. X̂ ⊆ X(X̂∗)−1∩(X̂∗)−1X, i.e. each word of the free hull X̂ occurs

as the first (and as the last) factor of some word of X in its X̂-factorization.
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Proof of Claim: Assume the contrary: there exists an x̂ such that x̂ ∈
X̂ \ (X̂∗)−1X. The case x /∈ X(X̂∗)−1 is symmetric. It follows, as we already

noted, that no word of X contains x̂ as the last factor in its X̂- factorization,
in other words, that

X ⊆ {1} ∪ X̂∗(X̂ \ {x̂}). (7)

We set
Z = x̂∗(X̂ \ {x̂}).

Then
Z+ = X̂∗(X̂ \ {x̂}) (8)

since:

X̂∗(X̂ \ {x̂}) = {w ∈ X̂∗ | w has an X̂-factorization such that the last

factor is in X̂ \ {x̂}}
= (x̂∗(X̂ \ {x̂))+

= Z+.

From (7) and (8) we obtain
X ⊆ Z∗, (9)

i.e. the monoid Z∗ contains X.
Next we show that

Z∗ is free with the base Z. (10)

Now recall that X̂ is a base of a free monoid. Therefore each word z ∈ Z∗ ⊆
X̂∗ can be written uniquely in the form

z = x1 . . . xn with xi ∈ X̂ and xn 6= x̂. (11)

Consequently, z has also the unique representation in the form:

z = x̂p1z1︸ ︷︷ ︸
∈Z

x̂p2z2︸ ︷︷ ︸
∈Z

. . . x̂przr︸ ︷︷ ︸
∈Z

with zi ∈ X̂ \ {x̂} and pi ≥ 0.

It follows that Z is a free generating set, i.e. (10) holds true.

Now the proof of Claim is easy: Since X̂ is a code, x̂ cannot be written
in form (11), and so x̂ /∈ Z∗. Therefore, by (9), we have:

X ⊆ Z∗ ⊂ X̂∗, with Z∗ free.

This contradicts with the fact that X̂ is the free hull.
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Proof of Theorem 34 (continued).
Case 1. 1 ∈ X. Then the monoids X∗ and (X \ {1})∗ have the same free

hull, so that this case is reduced to the other one.
Case 2. 1 /∈ X. We define the mapping α : X → X̂ by

α(x) = x̂ if x ∈ x̂X̂∗.

Now

• the value of α is always defined since X ⊆ X̂∗;

• α is well-defined since X̂ is a code; and

• α is surjective by Claim.

Now to prove the implication (6) we finally use the fact that X is not a code.
This means that some word has two X-factorizations:

x1 . . . xn = x′
1 . . . x′

m with xi, x
′
j ∈ X and x1 6= x′

1.

Hence from the definition of α we obtain:

α(x1)X̂
∗ ∩ α(x′

1)X̂
∗ 6= ∅.

Since X̂ is a code, this is possbile only if α(x1) = α(x′
1). This means that α

is not injective. So from the surjectivity we conclude that |X̂| = |α(X)| ≤
|X| − 1, as was to be proved.

Defect Theorem deserves a few remarks.

Remark 1. Our basic theorem of words, Theorem 3 is a consequence of
Defect Theorem: If two words satisfy a nontrivial relation, i.e. the set is not
a code, then they are powers of a same word, i.e. the free hull contains only
one word.

Remark 2. Defect Theorem can be viewed as a weak dimension property
of words: If a finite set X of words satisfies a nontrivial relation, i.e. ”is
dependent”, then these words can be expressed as products of fewer than
|X| words, i.e. ”belong to a smaller subspace”. We consider these matters
more in Chapter 6.

Remark 3. Our defect theorem was based on Corollary to Theorem 32.
A similar result based on Corollary to Theorem 33 can be proved, where the
”free hull” would be not only a code, but even a prefix. Also this is more
considered in Chapter 6.
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Next we turn to consider the important problem of deciding whether a
given set X ⊆ A∗ is a code, i.e. a free generating set of X∗. Obviously X is
a code if and only if

xX∗ ∩ yX∗ = ∅ for all x, y ∈ X with x 6= y. (12)

Indeed, this condition is equivalent to the fact that no word in X+ has two
X-factorizations.

The theory of finite automata gives a simple (but unefficient) method to
solve whether (12) holds for a finite set X: The problem is reduced to the
emptiness problem of so-called regular languages.

We do not assume any knowledge of finite automata, but instead give a
more combinatorial solution to this problem (which is actually essentially the
same given by the automata theory). The idea of the proof is very simple:
We search systematically for a word having a double X-factorization, if such
a word is found X is not a code. Consequently, the problem is when can we
stop the search if such a word does not exist.

Let X ⊆ A+ be arbitrary. We define recursively

U1 = X−1X \ {1},
Un+1 = X−1Un ∪ U−1

n X for n ≥ 1,

and prove:

Theorem 35. A set X ⊆ A+ is a code if and only if none of the sets Un

contains the empty word 1.

The proof of Theorem 35 is based on the following technical lemma.

Lemma 11. Let X and Un for n ≥ 1 be as above. Then for all n and k ≤ n
we have: 1 ∈ Un if and only if there exist u ∈ Uk and i, j ≤ n such that

uX i ∩Xj 6= ∅ with i + j + k = n. (13)

Proof. The proof is by decreasing induction on k. Let k = n. Now if 1 ∈ Un

we can choose in (13) u = 1 and i = j = 0. On the other hand, if (13) holds,
necessarily i = j = 0, and so 1 ∈ Un.

Ind. step. We consider a fixed value k, and assume that Lemma 11 holds
for all larger values. We have to show that the equivalence of Lemma 11
holds for our fixed value of k.
⇒: Assume that 1 ∈ Uk. Then by induction hypothesis there exist

v ∈ Uk+1 and i, j ≥ 0 such that

vX i ∩Xj 6= ∅ with i + j + k + 1 = n.
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So we can write vx = y for some x ∈ X i and y ∈ Xj. On the other hand,
since v ∈ Uk+1 one of the following two cases holds:

zv = u with z ∈ X and u ∈ Uk, or

z = uv with z ∈ X and u ∈ Uk.

These alternatives can be illustrated as:

where the arc means that ”belongs to X+”.
In the first case ux = zy, meaning that

uX i ∩Xj+1 6= ∅ with u ∈ Uk,

and in the second case zx = uy, implying that

uXj ∩X i+1 6= ∅ with u ∈ Uk.

Consequently (13) holds in both cases.
⇐: Now we assume that there exist u ∈ Uk and i, j ≥ 0 such that

uX i ∩Xj 6= ∅ with i + j + k = n.

Now we write

ux1 . . . xi = y1 . . . yj for some xi, yj ∈ X.

If j = 0 so is i. Therefore k = n, i.e. we are in the case considered at the
beginning of the proof. Assuming j ≥ 1 we have again two cases:

i. u = y1v with v ∈ A∗. Then v ∈ X−1Uk ⊆ Uk+1 and moreover

vx1 . . . xi = y2 . . . yj.

Consequently, vX i ∩ Xj−1 6= ∅, with v ∈ Uk+1, so that by induction
hypothesis 1 ∈ Uk.

ii. y1 = uv with v ∈ A∗. Now v ∈ U−1
k X ⊆ Uk+1 and moreover

x1 . . . xi = vy2 . . . yj.

Hence in this case vX j−1 ∩ X i 6= ∅ with v ∈ Uk+1, so that again
induction hypothesis yields 1 ∈ Uk.
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This completes the proof of Lemma 11.

Proof of Theorem 35. Assume first that X is not a code. Then we can
write

x1 . . . xp = y1 . . . yq for some xi, yj ∈ X with x1 6= y1.

Assuming, by symmetry, that |x1| < |y1| we can write y1 = x1u with u ∈ A+.
Consequently,

u ∈ U1 and uXp−1 ∩Xq−1 6= ∅.
Hence, by Lemma 11, 1 ∈ Up+q−1.

Second assume that 1 ∈ Un for some n. We apply Lemma 11 for k = 1:
there exist u ∈ U1 and i, j ≤ n such that uX i∩Xj 6= ∅. Since u ∈ U1 we can
write xu = y for some x, y ∈ X, and moreover x 6= y; otherwise U1 would
contain the empty word. It follows that xuX i ∩ xXj 6= ∅, or equivalently
that yX i ∩ xXj 6= ∅. But then X is not a code.

Note that the detailed proof of Theorem 35 is more complicated than the
intuition behind it!

It is also worth noticing that for a finite X we have:

i. if u ∈ Un, for some n ≥ 1, then |u| ≤ max{|x| | x ∈ X};
ii. if Ui = Uj, then, for any t ≥ 0, Ui+t = Uj+t.

Condition (i) implies that there exist only finitely many different Un sets.
Condition (ii), in turn, guarantees that once a repetition in the sequence
U1, U2, . . . is found all Ui sets are found as well. Hence we conclude

Corollary 1 (Sardinas-Patterson’s Algorithm). Let X ⊆ A+ be finite
and i ≥ 2 such that Ui = Ui−t for some t > 0. Then

X is a code ⇔ 1 /∈
i−1⋃

j=1

Uj.

In particular, the problem whether X is a code is decidable.

Actually the above corollary holds also for some other sets, such as for
regular sets. We give an example of this.

Example 11. Let X = {abaa, baa, baab} ∪ (aba)+b+. Then the Ui sets are
as follows

U1 = {b} ∪ ba(aba)∗b+,

U2 = {aa, aab} ∪ (ba(aba)∗b+ ∪ a(aba)∗b+),

U3 = ∅ ∪ (ba(aba)∗b+ ∪ a(aba)∗b+),

U4 = U3
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Therefore Uj = U3 for j ≥ 3, and since 1 /∈ U1 ∪U2 ∪U3 we conclude that X
is a code.

The rest of this chapter is devoted to study two special types of codes,
so-called maximal and complete codes. Moreover we concentrate on such
finite codes.

A code X ⊆ A∗ is maximal if it is not properly included in any code over
A, i.e. X ∪{x} with x ∈ A∗ \X is never a code. Complete codes are defined
as follows. We say that a set X ⊆ A∗ is dense if any word of A∗ is a factor
of X, i.e.

F (X) = A∗, or equivalently A∗ = (A∗)−1X(A∗)−1.

Now a set X ⊆ A∗ is complete if X∗ is dense, i.e. any word of A∗ is a factor
of a word in X∗. Finally by a complete code we mean a complete set which
is a code.

We can also talk about maximal prefixies, i.e. prefixies which cannot be
extended in the considered alphabet.

Bot of the above notions have a practical motivation: maximal codes use
the coding capacity in a maximal way, and complete codes allow any word
to be a part of an encoded message.

We start by considering finite prefixies. We recall that finite prefixies can
be viewed as finite trees, cf. 68.

Theorem 36. A finite prefix X ⊆ {a, b}∗ is maximal if and only if each of
its nodes has 0 or 2 descendants.

Proof. Let TX denote the tree associated to X.
Then if TX contains a node q having only one

descendant then X ∪ {y} would be a prefix, where
y is obtained by extending the path going through
the above node q using the other symbol. Hence X
is not a maximal prefix.

Conversely, if TX has always only two or zero
descendants, then, due to the fact that |A| = 2, any
word z is comparable to a word of X, i.e. one of
those is a prefix of another. Hence X ∪ {z} is not a
prefix.

Despite the simplicity of Theorem 36 it has two interesting consequences.

Corollary 1. Each finite prefix X ⊆ {a, b}∗ can be completed, i.e. extended,
to a finite maximal prefix.
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Proof. Obvious by Theorem 36

Corollary 2. Each maximal finite prefix X ⊆ {a, b}∗ is a maximal code.

Proof. Follows easily from Theorem 36 and a necessary condition for maximal
codes proved in Corollary 2 of Theorem 37.

In order to characterize maximal finite codes we associate with a set
X ⊆ A∗ of words its numerical value, so-called measure, as follows. Let

Π : A∗ → R+,

where R+ is a multiplicative monoid of nonnegative real numbers, be a mor-
phism satisfying ∑

a∈A

Π(a) = 1.

We call such a morphism a bernoulli distribution, or simply a distribution. A
distribution is positive if Π(a) > 0 for all a ∈ A and uniform if Π(a) = |A|−1

for all a ∈ A. Since Π is a morphism

Π(1) = 1,

and moreover ∑

u∈An

Π(u) = 1 for all n ≥ 1,

as is easily seen by induction:

∑

u∈An+1

Π(u) =
∑

v∈An

a∈A

Π(va) =
∑

v∈An

a∈A

Π(v)Π(a) = (
∑

v∈An

Π(v)) ·
∑

a∈A

Π(a)
i.h.
= 1.

Next we extend Π to a function

Π : 2A∗ → R+ ∪ {∞}

by setting

Π(X) =
∑

x∈X

Π(x) for all X ⊆ A∗.

Note that here the value∞ is needed if X is allowed to be infinite. Note also
that since Π(x) ≥ 0 for all x the value of the above sum is well-defined, that
is independent of the order of the summation (cf. Anal II). The value Π(X)
is called the measure of X with respect to Π.
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We observe the following inequalities:

Π(
⋃

i∈I

Xi) ≤
∑

i∈I

Π(Xi), (14)

where the equality holds at least when the sets Xi are pairwise disjoint,

Π(XY ) ≤
∑

x∈X

∑

y∈Y

Π(x)Π(y) =
∑

x∈X

Π(x)(
∑

y∈Y

Π(y)) = Π(X) · Π(Y ), (15)

and

Π(X∗)
(14)

≤
∑

n≥0

Π(Xn)
(15)

≤
∑

n≥0

(Π(X))n, (16)

and moreover in the last formula Π(X∗) <∞, if Π(X) < 1.
When X is a code we can say more.

Lemma 12. Let X ⊆ A+ and Π be a distribution of A∗.

i. If X is a code, then for all n ≥ 1:

Π(Xn) = (Π(X))n, (17)

and
Π(X∗) =

∑

n≥0

(Π(X))n.

In particular, Π(X∗) <∞ if and only if Π(X) < 1.

ii. Conversely, if Π is positive, Π(X) < ∞ and X satisfies (17), then X
is a code.

Proof. Let Sn = X × · · · ×Xn be the n-folded Cartesian product of X.
(i). Since X is a code the mapping

(x1, . . . , xn) 7→ x1 . . . xn

is a bijection Sn → Xn. Therefore

Π(Xn) =
∑

x∈Xn

Π(x) =
∑

(x1,...,xn)∈Sn

Π(x1) . . . Π(xn) = (Π(X))n,

where the second equality is due to the above bijection and the fact that Π
is a morphism. Since X is a code the sets Xn are pairwise disjoint so that
(14) and above yield

Π(X∗) =
∑

n≥0

(Π(X))n.
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Finally the last sentence of (i) follows from properties of geometric series.
(ii). Assume the contrary: X is not a code. Then there exists a word u

such that

u = x1 . . . xn = x′
1 . . . x′

m with xi, x
′
j ∈ X and x1 6= x′

1.

Then the word uu has two different X-factorizations of length k = n + m.
Therefore

(Π(X))k =
∑

(y1,...,yk)∈Sk

Π(y1) . . . Π(yk) ≥ Π(Xk) + Π(uu).

But since X satisfies (17), necessarily Π(uu) ≤ 0, a contradiction.

Now we are ready for a necessary condition for codes.

Theorem 37 (Kraft-MacMillan inequality). For any code X ⊆ A+ and
any distribution Π of A∗ we have Π(X) ≤ 1.

Proof. Assume first that the words of X are of length at most k (which still
would allow X to be infinite if A is infinite!). So we have

X ⊆ A1 ∪ A2 ∪ · · · ∪ Ak,

and therefore, for all n ≥ 1,

Xn ⊆ A1 ∪ A2 ∪ · · · ∪ Ank,

implying that
Π(Xn) ≤ nk.

If we would have Π(X) = 1 + ε, with ε > 0, then by Lemma 12

Π(Xn) = (1 + ε)n,

and so we would have

(1 + ε)n ≤ nk for all n ≥ 1.

Since this is impossible necessarily Π(X) ≤ 1.

Theorem 37 has several useful consequences.

Corollary 1. If X is a code over a k-letter alphabet, then
∑

x∈X k−|x| ≤ 1.

Proof. Apply Theorem (37) for the uniform distribution.
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Corollary 2. If X is a code and there exists a positive distribution Π such
that Π(X) = 1, then X is maximal.

Proof. Immediate from Theorem 37 and the positiveness of Π.

Example 12. Consider the sets

X = {a, ba, bb},
Y = {b, ab, ba},
Z = {ab, aba, aab}.

Clearly, X is a code while Y and Z are not. Note that Z is obtained from Y
by replacing b by ab Now if Π is a distribution such that Π(a) = p, Π(b) =
1− p = q, we compute:

Π(X) = p + pq + qq = p + pq + (1− p)q = p + q = 1,

Π(Y ) = q + pq + qp = q(1 + 2p) = q(3− 2q) =





1 if q =
1

2
10

9
if q =

2

3

,

Π(Z) = pq + pqp + ppq = pq + 2p2q = (p− p2) + 2(p2 − p3)

≤ 1

4
+

8

27
<

1

4
+

1

2
< 1,

where the first inequality follows by searching the maximal values of the
functions p− p2 and p2 − p3 on interval [0, 1].

So we conclude

• X can be proved maximal by Corollary 2 using any distribution, cf
Exc. 3/I.

• Y can be shown to be a noncode by using a suitable distribution,

• Z cannot be shown to be a noncode by any distribution.

This means that sometimes we can settle the question whether X ⊆ A+

is a code or a maximal code simply by computing one number! Intuitively
Theorem 37 says that a code cannot contain ”too many short words”. Corol-
lary 2, in turn, tells that once the measure of a code X reaches 1, then it is
maximal.

Next our goal is to show that the property ”Π(X) = 1 ” for finite codes
characterizes the maximal ones, i.e. that also the converse of Corollary 2
holds for maximal codes.
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In doing so we have to consider complete codes, and more precisely the
problem whether a given code can be extended (by adding some words) to a
complete one. If this is the case we say that a code can be completed. Next
result shows how this is always possible.

Theorem 38. Let X ∈ A+ be a code and y ∈ A+ an unbordered word such
that A∗yA∗ ∩X∗ = ∅. Then

Y = X ∪ y(Uy)∗, (18)

where
U = (A∗ \X∗) \ A∗yA∗, (19)

is a complete code.

Proof. Set V = A∗ \ A∗yA∗. Then, by the choice of y, X∗ ⊆ V and further
U = V \X∗, as illustrated in Figure.

Claim I. Z = V y is a prefix.
To prove this assume that vy < v′y with v, v′ ∈ V . There are two

possibilities: either v′ < vy or vy ≤ v′. In the first case y is bordered:

And in the second case v′ ∈ A∗yA∗. Since both of these are impossible Claim
I is proved.

Claim II. Y is a code.
Proof of Claim II. Assume the contrary:

y1 . . . yn = y′
1 . . . y′

m with yi, y
′
j ∈ Y and y1 6= y′

1 (20)
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Since X is a code not all words in (20) are from X, i.e. at least one is
from Y \ X ⊆ yUy. Say yp is such a word. We can further assume that p
is minimal, in other words, that words y1, . . . , yp−1 are in X. Now, by our
assumptions y /∈ F (X∗) so that also yp /∈ F (X∗). This means that in (20) at
least one of the words y′

j is from yU ∗y. Again denote by y′
q the one where q

is minimal.
Now, by (20), the words

y1 . . . yp−1y, y′
1 . . . y′

q−1y ∈ V y = Z

are comparable. But, by Claim I, Z is a prefix, so that they are equal.
Consequently, we have

y1 . . . yp−1 = y′
1 . . . y′

q−1 with yi, y
′
j ∈ X, y1 6= y′

1.

This, in turn, is possible only if p = q = 1.
So we can write

{
y1 = yu1yu2 . . . yuky with k ≥ 0 and u1 ∈ U

y′
1 = yu′

1yu′
2 . . . yu′

ly with l ≥ 0 and u′
i ∈ U

(21)

By symmetry, we may assume that y1 < y′
1. Since U ⊆ V , the words uiy and

u′
jy are in Z. Hence, Claim I implies that

u1 = u′
1, . . . , uk = u′

k,

and further that
y−1

1 y′
1 = t = u′

k+1y . . . yuly.

Consequently (20) comes into the form

y2 . . . yn = ty′
2 . . . y′

m.

Since y1 < y′
1 the word y is a factor of t, and hence also a factor of y2 . . . ym.

So again, since y /∈ F (X∗), some yj is in yU ∗y, and let r be the corresponding
minimal value of j. Then the words y2 . . . yr−1y and u′

k+1y are comparable
and in Z, and so, by Claim I, we have:

u′
k+1 = y2 . . . yr−1 with y2, . . . yr−1 ∈ X, u′

k+1 ∈ U = V \X∗.

This contradiction proves Claim II.
Proof of Theorem 38 (continued). It remains to be proved that Y is

complete. Let w ∈ A+ be an arbitrary word. We write it in the form

w = v1yv2y . . . vn−1yvn with n ≥ 1 and vi ∈ A∗ \ A∗yA∗. (22)
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We show that
ywy ∈ Y ∗,

which completes the proof. Let vi1 , . . . , vis be exactly those vi’s in (22) which
are in X∗. Then we can write

ywy = (yv1y . . . vi1−1y)vi1(yvi1+1y . . . vi2−1y)vi2 . . . vis(yvis+1y . . . vny),

which shows that ywy ∈ Y ∗.

A reformulation of Theorem 38 is as follows:

Corollary 1. Each code X ⊆ A+ can be completed.

Proof. If X is not complete, there exists a word z which is not a factor in
X∗. Then Example 2 in Chapter 1 shows that z can be extended to an
unbordered word, say y. Of course, y is neither a factor in X∗, so that we
can apply the construction of Theorem 38.

Another consequence is the following.

Theorem 39. Each maximal code is complete.

Proof. If |A| = 1 the only codes over A are singletons and hence both max-
imal and complete. If |A| ≥ 2 and X is not complete, then, by the proof of
Corollary 1, it is not maximal either.

We still need one more lemma.

Lemma 13. If X ⊆ A+ is finite and complete, and Π is a positive distribu-
tion, then Π(X) ≥ 1.

Proof. Since X is complete we have A∗ = (A∗)−1X∗(A∗)−1. But by the
finiteness of X we can rewrite this as

A∗ = P−1X∗S−1,

where P and S are finite sets of words; in fact P = pref(X) and S = suf(X).
We need only the finiteness of P and S.

Now, we recall that

Π(A∗) =
∑

n≥0

Π(An) =
∑

n≥0

(Π(A))n =∞.

It follows that for some p ∈ P and s ∈ S necessarily

Π(p−1X∗s−1) =∞. (23)
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Clearly
p(p−1X∗s−1)s ⊆ X∗,

and therefore
Π(s) · Π(p−1X∗s−1) · Π(p) ≤ Π(X∗).

So (23), together with the positiveness of Π, implies that Π(X∗) =∞.
Hence the lemma follows from the estimates

Π(X∗) ≤
∑

n≥0

Π(Xn) ≤
∑

n≥0

(Π(X))n

and properties of geometric series.

Let us compare Lemma 13 to Theorem 37: The results are in some sense
dual. By Theorem 37 the measure of any code is ”small”, in fact at most 1,
while Lemma 13 guarantees that the measure of complete (and finite) sets is
”large”, namely at least 1.

Now we are ready for a characterization of maximal finite codes.

Theorem 40. Let X ⊆ A+ be a finite code. The following conditions are
equivalent:

i. X is maximal,

ii. there exists a positive distribution Π such that Π(X) = 1,

iii. for all positive distributions Π, we have Π(X) = 1,

iv. X is complete.

Proof. Follows from our earlier considerations:

(i)
Cor. 2 Thm 37←−−−−−−−− (ii)

Thm 39

y
xclear

(iv) −−−−−−−−−−−→
Lemma 13, Thm 37

(iii)

We complete this chapter with two examples. The first one shows that, in
general, the classes of complete codes and maximal codes are not the same.
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Example 13. Let A = {a, b} and define r(w) = |w|a : |w|b with the conven-
tion that r(an) =∞. We consider

D = {w ∈ A+ | r(w) = 1 and ∀u ∈ A+, u < w : r(u) 6= 1}.

Clearly D is a prefix and

D+ = {w ∈ A+ | r(w) = 1}.

Claim I. D is dense, and hence complete
Indeed, for any w ∈ A+ the word

v = a2|w|bwb|w|

is in D as can be straightforwardly seen. Hence the Claim I holds.
Claim II. D′ = D \ {x} with x ∈ D is also dense.

Indeed, any factor of x is a factor of xx which, in turn, is a factor of a word
in D (since D is dence), and hence also in D \ {x}. On the other hand, any
word which is not a factor of x is also a factor of a word in D (since D is
dense), and hence also of a word in D \ {x}.

So D′ is a complete code which is not maximal. However, D itself is also
maximal (cf. Exc.).

Our second example is connected to the problem of extending a given
code into a maximal one. By Corollary 1 to Theorem 38 any finite code can
be completed to a complete, and hence by Theorem 39, to a maximal code
Y . The Y given in Theorem 39 is not finite, and by the next example, cannot
be so in general.

Example 14. The set
X = {a5, ba2, ab, b}

is clearly a code, and we show that it is not a subset of any maximal finite
code.

Assume the contrary: X ⊆ Y with Y maximal. Set m = max{|y| | y ∈ Y }
and consider the word

u = bma4+5mbm.

Since Y is maximal it is also complete (Theorem 40) so that u is a factor of
a word in Y ∗. By the choice of m, the words bm and a4+5m are not factors of
Y . Hence we can write u in the form

u = bpyaqy′br with p, q, r ≥ 0, br ∈ Y ∗ and y, y′ ∈ Y ∪ {1},

illustrated as follows:
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The word a5 is the only word in Y not containing b. Hence q ≡ 0 (mod 5),
and so |y|a + |y′|a ≡ 4 (mod 5). We write

y = bha5s+i and y′ = a5t+jbk with 0 ≤ i, j ≤ 4.

Further since i + j ≡ 4 (mod 5), necessarily i + j = 4.
There remain 5 cases, and we exclude each of those one by one:

I i = 0 and j = 4. Then k ≥ 1, since {a5, a5t+4} is not a code. But then
there exists a word with two Y -factorizations:

ba2.a5t+4bk = b.a5(t+1).ab.bk−1.

II i = 1 and j = 3. Then we have

bha5s+1.b = bh.a5s.ab.

III i = 2 and j = 2. Then we have

b.a5t+2bk = ba2.a5t.bk.

IV i = 3 and j = 1. Then, as in I, h ≥ 1, and so

bha5s+3.b = bh−1.ba2.a5s.ab.

V i = 4 and j = 0. Then we have

bha5s+4.ab = bh.a5(s+1).b.

Therefore each possible case leads to a contradiction, proving that X indeed
cannot be completed to a finite maximal code.

Our final remark is the following. It is always possible to extend a code
X to a maximal one. Indeed, this can be shown by using Zorn’s Lemma -
and hence the proof is very nonconstructive!
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6 Dimension properties

As a starting point we recall our two earlier results, namely Theorems 3 and
34. The first one stated that if two words satisfy a nontrivial relation, then
they are powers of a word, and the second one that if words from a finite set
X satisfy a nontrivial relation, then the free hull of X contains less than |X|
words.

Both of these results are examples of so-called defect effect: ”If n words
satisfy a nontrivial relation they can be expressed (simultaneously) as prod-
ucts of at most n − 1 words.” Clearly, the defect effect can be viewed as a
dimension property of words. However, as we shall see

• dimension properties of words are rather weak, and

• there exist, not only one, but several results, which formalize the above
defect effect.

Let X ⊆ A+ be a finite set. We define its
combinatorial rank (or c-rank) as the smallest number of words needed

to express all words of X, i.e.

rc(X) = min{|F | | X ⊆ F ∗};

prefix rank (or p-rank) as the size of the base of the smallest right unitary
submonoid of A∗ containing X, i.e.

rp = |B|, where B is the base of RUM(X) =
⋂

X⊆M⊆A∗

M is right unit.

M ;

free rank (or f -rank) as the size of the base of the smallest free submonoid
of A∗ containing X, i.e.

rf(X) = |X̂|, where X̂ is the base of FM(X) =
⋂

X⊆M⊆A∗

M is free

M.

The above definitions deserve several comments.
Remark 1. Clearly, the combinatorial rank of X is well defined. For the

other two ranks this is not obvious, but follows from Theorem 32 (Schützen-
berger criterium) and the definition of right unitary monoids.

Remark 2. By considerations of the previous chapter the bases of FM(X)
and RUM(X) are unique. These are called free hull and prefix hull of X,
and are denoted by

X̂(f) and X̂(p),
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so that, in our earlier notations, X̂(f) = X̂, and

rf (X) = |X̂(f)| and rp(X) = |X̂(p)|.

Moreover,

X̂(f) is a code, and

X̂(p) is a prefix.

Concerning the combinatorial rank there need not be the unique Y such that
cr(X) = |Y |. However, by the definition of cr(X), and defect theorem, any
Y satisfying cr(X) = |Y | is necessarily a code.

Remark 3. Note that the combinatorial rank rc(X) emphasizes combina-
torial aspects of the notion of a rank, while the other two emphasize more
algebraic aspects of a rank.

Remark 4. Finally, we note a few obvious connections of the above notions

rc(X) ≤ min{|X|, |A|},
rc(X) ≤ rf (X) and rc(X) ≤ rp(X).

Example 1. Let X = {a, ab, cc, bccdd, dda}. We compute the prefix hull

X̂(p) of X. Now the words of X satisfy just one minimal relation:

(1)

Since a, ab ∈ X ⊆ X̂(p)+ and X̂(p)+ is right unitary, necessarily b ∈ X̂(p)+.

Similarly, from bccdd, bcc ∈ X̂(p)+ we obtain that dd ∈ X̂(p)+. Therefore

{a, b, cc, dd} ⊆ X̂(p)+,

and hence also
{a, b, cc, dd}+ ⊆ X̂(p)+.

But the set {a, b, cc, dd} is a prefix, so that by the minimality of RUM(X) =

X̂(p)+, we obtain

X̂(p) = {a, b, cc, dd},
and so

rp(X) = 4.

Consequently, also rc(X) ≤ 4. That it indeed equals to 4 has to be
checked by an exhaustive search: Clearly, any Y such that X ⊆ Y ∗ must
satisfy
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• Y contains a,

• Y contains c or cc,

• Y contains b or ab,

• Y contains a word containing d.

Therefore |Y | ≥ 4, implying that rc(X) = 4. Note also that

X ⊆ {a, b, c, d}+ and X ⊆ {a, b, cc, dd}+

showing that the Y defining the value of rc(X) is not unique.

Finally, let us compute X̂(f) from (1). The reasoning is the same what

we have already had (and is very similar to that used to compute X̂(p)):
From (1) we see that

a, ab, bccdda, ccdda ∈ X̂(f)+ and abcc, abccdd, dda, a ∈ X̂(f)+, and hence,
by SC (Schützenberger’s Criterium),

b, dd ∈ X̂(f)+.

Therefore {a, b, cc, dd} ⊆ X̂(f)+, and the minimality of X̂(f)+, and the fact
that {a, b, cc, dd} is a code, imply that

X̂(f) = {a, b, cc, dd}.

It follows that

X̂(p) = X̂(f) and rc(X) = rp(X) = rf(X) = 4 < |X|.

Let us look at a bit more closely the methods used in Example 1 to
compute X̂(f) and X̂(p). The free hull X̂(f) is computed by using SC to a
double factorization like

(2)

to conclude that w ∈ X̂(f)+, and hence to obtain a candidate X1 for X̂(f).
In Example 1 X1 would be {a, b, cc, ccdd, dda}. Since this is not a code,
indeed ccdd.a and cc.dda, we can continue to obtain X2 = {a, b, cc, dd}. But

this is a code so that X̂(f) = X2.

In computing X̂(p) we work under weaker assumptions than (2) namely
under the assumption
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to conclude that w ∈ X̂(p)+. Hence, if the procedure to compute X̂(f)

leads to a prefix code (and not only a code), then we obtained X̂(p), i.e.

X̂(f) = X̂(p), as was the case in Example 1.
It is worth emphasizing that although the above method to compute the

free hull X̂(f) works nicely in concrete examples, it is not so clear how to
formalize it, i.e. how to define the sequence X0, X1, . . . , Xn of finite sets such
that X0 = X,Xn = X̂(f) and Xi+1 is obtained from Xi by application of
SC. This, indeed is one reason why our proof for the Defect Theorem was
completely different!

On the other hand to compute the prefix hull the situation is much nicer
as we now show. We define the following

Procedure: Given a finite set X ⊆ A+, considered as an unambiguous
multiset.

1. Find two words x, y ∈ X such that x < y. If there exist no such words
go to 4:

2. Set X ← X ∪ {x−1y} \ {y} as a multiset;

3. If X is ambiguous identify equal elements, and go to 1;

4. Output X̂(p)← X.

Using above we obtain a variant to the Defect Theorem.

Theorem 41. Let X ⊆ A+ be finite. The prefix hull X̂(p) satisfies

|X̂(p)| ≤ |X|, (3)

and moreover,
|X̂(p)| < |X|, (4)

if X is not a code.

Proof. Recall first that the smallest right unitary submonoid of A+ containing
X exists, by Corollary 1 to Theorem 33 and hence the prefix hull as the base
of this monoid exists, too; in our earlier notations

X̂(p)+ = RUM(X) =
⋂

X⊆M⊆A+

M is right unit.

M.
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If X is a prefix, clearly X̂(p) = X. If on the other hand, x, y ∈ X, where

y = xt with t ∈ A+, then by the definition of the right unitary, x, t ∈ X̂(p)+,

and hence X1 = (X \ {y}) ∪ {t} ⊆ X̂(p)+. Since also X ⊆ X+
1 , if X1 is a

prefix the minimality of X̂(p) yields that X1 = X̂(p). Otherwise we repeat
the construction. But this is exactly what is done in the above Procedure.
Hence it computes the prefix hull correctly, and clearly implies (3).

It remains to prove (4). So assume that X satisfies a nontrivial relation,
say xα = yβ, with α, β ∈ X∗. Further let s(X) denote the size of X,
i.e. s(X) =

∑
x∈X

|x|. In each round of the procedure the new X, say X ′ =

(X \ {y}) ∪ {t} with y = xt, t ∈ A+ satisfies

s(X ′) < s(X), (5)

and moreover,

i. X ′ satisfies a nontrivial relation, namely α = tβ, if y = xt with t ∈ A+,
or

ii. |X ′| < |X|, when an identification in step 3 is done.

By (5), (i) cannot take place forever, so that (ii) must be encountered, proving
(4).

It is worth noting that the proof of Theorem 41 is really much simpler
than that of the Defect Theorem (Theorem 34). Theorem 41 and its proof
yield several consequences.

Corollary 1. The prefix hull can be computed in time O(s(X)4).

Proof. Indeed, each step of the Procedure can be done by a naive algorithm
in time O(s(X)3), and, by (5), there are at most O(s(X)) rounds.

Corollary 2. For each finite set X ⊆ A+ we have rp(X) ≤ rf (X).

Proof. Since X̂(p)+ is free, by the minimality of X̂(f)+, we have

X̂(f) ⊆ X̂(p)+,

and moreover X ⊆ X̂(f)+. From the first inclusion we obtain (
̂̂
X(f))(p) ⊆

X̂(p)+, and hence, by the latter and the minimality of X̂(p)+, this inclusion
cannot be proper. That means that

(
̂̂
X(f))(p) = X̂(p).

Consequently, by Theorem 41, |X̂(p)| ≤ |X̂(f)| as was to be proved.
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Actually the essential message of Theorem 41, namely (4), can be sharp-
ened. We say that a subset X ⊆ A+ is an ω-code, if each infinite word ω ∈ Aω

has at most one X-factorization. Obviously each ω-code is an ordinary code.

Corollary 3. Each finite set X ⊆ A+ which is not an ω-code satisfies
|X̂(p)| < |X|.

Proof. Exactly as that of Theorem 41, except that instead of ”nontrivial
relations” in Theorem 41 we now consider ”nontrivial ω-relations”.

Corollary 3 states that any finite set X ⊆ A+ such that some infinite word
w has two X-factorizations possesses a defect effect. This does not hold if
an infinite word is replaced by a 2-way infinite word:

Example 2. Let X = {abc, bca, c}. Then, as is straightforward to see,
rc(X) = 3. However, we have

i.e. there exists a 2-way infinite word having two X-factorizations.

We saw in Example 1 that all the ranks we have defined may coincide.
Our next example shows that they can also be different.

Example 3. Let

X = {aa, aaaaba, aababac, baccd, cddaa, daa, baa}.

The only minimal relation is:

Hence, by SC, aaba and bac are in X̂(f). Therefore

X ⊆ X+
1 with X1 = {aa, aaba, bac, cd, daa, baa} ⊆ X̂(f)+.

Note that each word of X+ factorizes uniquely in X+
1 . However X+

1 is not
free since it satisfies one minimal relation, namely:
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This implies that

X2 = {aa, ba, c, d, baa} ⊆ X̂(f)+.

But now X2 is a code, so that X2 = X̂(f)+. To continue we apply the
Procedure of p. 94 to compute the prefix hull:

baa ⇒ a ∈ X̂(p),

implying that
X3 = {a, ba, c, d} ⊆ X̂(p)+.

And since X3 is a prefix we conclude that X̂(p) = X3.
As the conclusion, we have

X ⊂ X+
1 ⊂ X̂(f)+ ⊂ X̂(p)+,

or in terms of ranks

4 = rp(X) < rf(X) < |X1| < |X| = 7.

In this particular case rc(X) is also 4. However, if we replace X by h(X),
where h : {a, b, c, d}+ → {a, b, c}+ is a morphism defined by h(a) = a, h(b) =
b, h(c) = c and h(d) = bb, then the situation changes. Clearly rc(h(X)) = 3,
while all the other ranks remain unchanged. Indeed, the above considerations
would not change at all.

To summarize the above considerations we conclude: For any finite set
X ⊆ A+, we have (by Corollary 2 of Theorem 41)

rc(X) ≤ rp(X) ≤ rf (X) ≤ |X|. (6)

Moreover, if X is not a code, i.e. satisfies a nontrivial relation, then

rf (X) < |X|,

i.e. X possesses a defect effect. In general, the inequalities in (6) can be
proper or not. For instance, by Examples 1 and 3, there exists noncodes for
which the two first inequalities are both strict or both equalities.

Next we turn to consider the defect effect of several relations. For Ex-
ample, if a set X ⊆ A+ satisfies two ”different” nontrivial relations, can the
words of X be expressed as products of at most |X|−2 words? Unfortunately,
the answer to this questions is negative, showing that dimension properties
of words are actually very weak.
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Example 4. Consider the following pair of equations
{

xyz = zyx

xyyz = zyyx
.

Clearly this pair has a solution x = z = a and y = b of (any) rank two.
However, the equations are even independent: The triple (a, b, aba) is a solu-
tion of the former, but not of the latter, and (a, bb, abba) is a solution of the
latter, but not of the former:

Before continuing we have to fix some terminology. A finite set X ⊆ A+

of words (considered as an ordered set) can be identified with a solution of a
constant-free equation it satisfies. In this view it is more natural to interpret
the defect effect we have been considering by saying that

• a nontrivial equation causes a defect effect (i.e. any of its solutions is
of rank smaller than the number of unknowns), rather than

• any noncode X possesses a defect effect.

This view becomes even more natural when we now consider defect effect of
several relations.

Recall that a constant-free equation over A∗ with Ξ as the set of unknowns
is a pair (u, v) ∈ Ξ+ × Ξ+, usually denoted as u = v. Its solution is a
morphism h : Ξ∗ → A∗ satisfying h(u) = h(v). Systems of equations
and their solutions are defined in a natural way. Further two systems are
equivalent, if they have exactly the same solutions. We recall that

• an equation u = v is reduced if pref1(u) 6=pref1(v) and suf1(u) 6=suf1(v),

• a system S of equations is independent, if it is not equivalent to any of
its proper subsystems.

Let X ⊆ A+ be finite, and Ξ a finite set of unknowns such that |X| = |Ξ|.
Relations in X+ are viewed - under a renaming X → Ξ - as equations with
Ξ as the set of unknowns and X as a solution. Of course, this requires to
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consider X as an ordered set. It also allows to express the set of all relations
of X+, in symbols RX , as a system of equations having Ξ as the set of
unknowns and X as a solution. We denote by E(X) the set of all reduced
equations of X.

The intuitive notion that X satisfies two ”different” relations is now for-
malized that the corresponding set of equations forms an independent pair
of equations.

In what follows, unlike earlier, it is important that 1 /∈ X, i.e. the equa-
tions are over a free semigroup A+, and not over the free monoid A∗.

Now let X = {u1, . . . , un} ⊆ A+ and E(X) ⊆ Ξ+ × Ξ+ be the set of
reduced equations determined by X. This means that X = h(Ξ) for some
morphism h : Ξ+ → A+ satisfying h(α) = h(β) for all (α, β) ∈ Ξ+ × Ξ+.
With each equation e in E(X), say

e : xα = yβ with x 6= y, x, y ∈ Ξ and α, β ∈ Ξ∗

we associate the set
Π(e) = {h(x), h(y)},

and with the system E(X) we associate the graph GE(X) such that

• the set of nodes of GE(X) is X, and

• the set of edges of GE(X) are defined by:

(u, v) is an edge in GE(X) ⇔ Π(e) = {u, v}.

We use GE(X) to define an equivalence relation on X:

u, v ∈ X are equivalent ⇔ u, v are in the same component of GE(X).

Let us denote by c(GE(X)) the number of connected components of GE(X).
Using this quantity we now generalize Theorem 41 as follows. Since we
consider elements of X as unknowns it is natural to allow X to be a multiset.
Indeed, from the technical point of view this is important in the next proof.

Theorem 42. For any finite set X ⊆ A+ we have

rc(X) ≤ rp(X) ≤ c(GE(X)).

Proof. As we have seen the first inequality holds. To prove the second we
have to recall the Procedure of p. 94 to compute the prefix hull of X.

Let u—v be an edge in GE(X). Assuming, by symmetry, that u ≤ v we
have two possibilities:
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1. u=v, and then we identify u and v,

2. v = ut with t ∈ A+, and then we replace X by X ∪ {t} \ {v}.

Let X ′ ⊆ A+ be a multiset obtained from X by performing (1) or (2) once.
Note that, due to (2), X ′ can be a multiset even if X would be unambiguous.
Our claim is:

c(GE(X′)) ≤ c(GE(X)). (7)

Now, if the operation performed is (1) there is nothing to be proved. So it
remains to analyze what happens to the graph GE(X) when 2 is performed.
In particular, we have to consider what happens to a subgraph of it of the
form:

(8)

Clearly, the connections zi—u remain, and connection v—yj are replaced
by u—yj . Moreover, the node v will disappear and a new node t will be
connected in GE(X′) to all yk’s in X such that uykα = vβ, with α, β ∈ X∗, is
in E(X). In addition, a new node t may create some completely new edges
to GE(X′). But what is important is that, if GE(X) contains the subgraph of
(8), then GE(X′) contains the following subgraphs:

u tand

z1

zp

y1

yq

y1

yq

… … …

,

where, moreover, the nodes yk are nodes of GE(X), i.e. belong to some of the
components of GE(X). Therefore, the replacement of v by t does not increase
the number of components, proving (7).

To complete the proof we first not that s(X ′) < s(X). Consequently, an
iterative application of rules (1) and (2) leads finally to a discrete graph, the
edges of which are labeled by a set X ⊆ A+.

Now, it is important to note that when performing (1) and (2) we are
actually following the Procedure of p. 94. Hence, by the proof of Theorem
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41, X is included in X̂(p)+, and therefore, by the minimalities of X̂(p)+ and

X̂(p)+, necessarily X̂(p) = X̂(p), implying

|X̂(p)| = |X̂(p)| ≤ |X|.
On the other hand, by (7) and the discreteness of GE( bX), we also have

|X| = c(GE( bX)) ≤ c(GE(X)).

These two inequalities completes the proof.

Theorem 42, like Theorem 41, has a number of interesting consequences.

Corollary 1. Let X ⊆ A+ be finite. If the graph GE(X) is connected then X
is periodic, i.e. there exists z ∈ A+ such that X ⊆ z+.

As a special case of the above we obtain

Corollary 2. If a three-element set X = {u, v, w} ⊆ A+ satisfies the rela-
tions {

uα = vβ

uγ = wδ
with α, β, γ, δ ∈ X∗. (9)

then u, v and w are powers of a same word.

Proof. Indeed the graph associated to (9) is connected:

w v

�� LL

u

Corollary 2 can be viewed as a generalization of Theorem 3 (cf. also Exc.
7/III). As shown by Example 4, the pair (9) cannot be replaced by a pair of
independent equations. Connected to Corollary 2 there exist the following
interesting

Open Problem : Does there exist an independent system of three equa-
tions with three unknowns such that it has a nonperiodic solution in A+?

The third Corollary to Theorem 42 is like that of Theorem 41. Instead of
considering finite relations of X+ we can consider one-way infinite relations.
Using those we can associate with each X ⊆ A+ a graph, say GEω(X), exactly
as GE(X) was associated to X. And the proof of Theorem 42 immediately
extends to

101



Corollary 3. For each finite X ⊆ A+ we have

rc(X) ≤ rp(X) ≤ c(GEω(X)).

We continue with a few examples. The first one points out clearly that
it is important to assume that 1 /∈ X.

Example 5. The graph of the pair

{
x = zx

y = zy

is clearly connected. However, in A∗ it has a solution of rank 2, namely
x = a, y = b and z = 1.

Although we do not know an answer to the open problem of the p. 101,
we shall show in next examples -as a further evidence of the weakness of
dimension properties of words - that there exist ”large” independent systems
of equations forcing only a ”small” defect effect.

Example 6. Let

Ξ = {x, y} ∪ {ui, vi, wi | i = 1, . . . , n}

be a set of unknowns and

S : xujwkvjy = yujwkvjx for j, k = 1, . . . , n,

a system of equations over A+ with Ξ as the set of unknowns. Then clearly

|S| = n2 and |Ξ| = 3n + 2.

We claim that

1. S has a solution of combinatorial rank 3n + 1,

2. S is independent.

The condition (1) is easy to satisfy: choose x = y, so that all equations
become trivial, and hence a required solution can be found when |A| ≥ 3n+1.

The fact that S is independent is more difficult to see. We have to show
that, for each pair (j, k), there exists a solution of

S(j, k) = S \ {xujwkvjy = yujwkvjx},
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which is not a solution of the whole S. Here is such a solution:



x = b2ab

y = b

ut =

{
ba if t = j

bab otherwise

wt′ =

{
bab2 if t′ = k

b otherwise

vt =

{
ba if t = j

a otherwise

. (10)

Then if t = j and t′ = k we compute

xujwkvjy = b2ab.ba · · · 6= b.ba.bab2 · · · = yujwkvjx,

and conclude that (10) is not a solution of S. That it is a solution of S(j, k)
is a matter of simple computations:

t 6= j ∧ t′ 6= k : b2ab.bab.b.a.b = b.bab.b.a.b2ab,

t 6= j ∧ t′ = k : b2ab.bab.bab2.a.b = b.bab.bab2.a.b2ab,

t = j ∧ t′ 6= k : b2ab.ba.b.ba.b = b.ba.b.ba.b2ab.

As a modification of Example 6 we present

Example 7. Now let

Ξ = {xi, yi, ui, vi, wi | i = 1, . . . , n}
and

S ′ : xiyjwkvjyi = yiujwkvjxi for i, j, k = 1, . . . , n.

Consequently, S ′ contains n3 equations having only 5n unknowns. Note that
S ′ is obtained form S of Example 6 by introducing both for x and y n copies.
Next we extend the solution (10) as follows:





xt′′ =

{
b2ab if t′′ = i

a otherwise

yt′′ =

{
b if t′′ = i

a otherwise

. (11)

It follows directly from computations in Example 6 that (10) and (11) define
a solution which satisfies all equations of S ′ except the one xiujwkvjyi =
yiujwkvjxi. Therefore also S ′ is independent, and still has a nonperiodic
solution.
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We make the following remarks connected to above considerations, and
in particular to Examples 6 and 7

Remark 1. Example 6 can be interpreted as follows: There exists an
independent system of equations of size Ω(n2) containing n unknowns such
that it forces only the minimal defect effect, i.e. the defect effect of order
1. Similarly, Example 7 shows that there exists an independent system of
equations of size Ω(n3) containing n unknowns which does not force the
maximal defect effect, i.e. force solutions to be periodic.

Remark 2. The above bounds were in the semigroup A+. In the free
monoid A∗ these lower bounds can be made Ω(n3) and Ω(n4), respectively.

Remark 3. In Example 6 we needed that |A| ≥ 3n− 1 in order to find a
solution of combinatorial rank of at least 3n + 1. If instead of the combina-
torial rank we would consider the prefix rank, then A can be binary: Indeed,
the solution of c-rank 3n + 1 in Example 6 can be transformed to a solution
having the prefix rank equal to 3n + 1 by encoding letters, say a1, . . . , a3n+1,
to binary words as follows: ai → aib.

Remark 4. Finally, as we saw in Corollary 1 of Theorem 41, the prefix
rank is not difficult to compute. Similarly, one could show that the free
rank of a finite set X can be computed in polynomial time. The same does
not hold for the combinatorial rank: the problem of deciding whether the
combinatorial rank of a given finite set is less than a given number k is so-
called NP-complete problem. Consequently, it is not likely that there exists
a polynomial time algorithm to compute the combinatorial rank of a given
finite set X!

So far we have considered (different types of) ranks of finite sets X ⊆ A+,
or those of a solution of an equation with a finite number of unknowns. Now
we turn to consider ranks of equations defined as follows: The rank of an
equation u = v is the maximal of the ranks of its solutions.

So it looks that different notions of the rank of a finite set seem to lead
different notions of the rank of an equation. Fortunately, this is not the case,
as we shall next show. More precisely, we show that the combinatorial and
the prefix rank of an equation - defined as above - coincide. A similar argu-
mentation could be used to show that the same holds for the combinatorial
and the free rank.

Theorem 43. Let e : u = v be a constant-free equation having the unknowns
Ξ. Then the combinatorial and the prefix ranks of e coincide, i.e.

max{rc(h(Ξ)) | h ∈ Sol(e)} = max{rp(h(Ξ)) | h ∈ Sol(e)}. (12)
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Proof. For each solution h of e we clearly have

rc(h(Ξ)) ≤ rp(h(Ξ)),

showing that the left hand side of (12) is at most as large as the right hand
side.

To prove the converse we construct, for each solution h : Ξ+ → A+, a
new solution h′ : Ξ+ → A+ such that

rc(h
′(Ξ)) = rp(h(Ξ)). (13)

Let the prefix hull of h(Ξ) be U = {u1, . . . , ud}. Consequently, for each
x ∈ Ξ, h(x) has the unique U -factorization

h(x) = ui1 . . . uit. (14)

Next let A′ be a new alphabet of size d, and Θ : (A′)∗ → U∗ be an isomor-
phism. For each i = 1, . . . , d, let ci be an element in A′ such that Θ(ci) = ui.

Now the morphism h′ : Ξ+ → (A′)+ is defined by the condition:

h′(x) = ci1 . . . cit ⇔ h(x) = ui1 . . . uit with uij ∈ U.

Clearly, h′ is well-defined, and moreover Θ(h′(x)) = h(x) for all x in Ξ. Since
Θ is an isomorphism, A′ is the prefix hull of h′(Ξ). Indeed otherwise h′(Ξ)
would be included in a smaller right unitary submonoid of (A′)∗, and hence
its image under Θ would be a smaller right unitary submonoid of A+ than
U+.

From above it follows that rc(h
′(Ξ)) ≤ d = rp(h(Ξ)). If rc(h

′(Ξ)) < d,
then there would be at most d− 1 words of (A′)∗ such that each word h′(x)
could be expressed as products of these words. Therefore also words in (14)
could be expressed as products of at most d− 1 words of U+. This, however,
contradicts with the fact that, for any X ⊆ A+, the prefix hull X̂(p) satisfies:

Each element of X̂(p) occurs as the last factor in the X̂(p)-factorization of
some word of X. This fact follows directly from the Procedure to construct
the prefix hull.

Hence it follows that rc(h
′(Ξ)) = d, which proves (13), and hence the

whole theorem.

Theorem 43 deserves a few comments.

Remark 1. In the formulation of Theorem 43 we purposely did not specify
the alphabet, where the equation is solved. If we would like to do it we could,
by the proof, fix it to be of the size |Ξ| − 1.
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Remark 2. Essentially the same proof, using Lemma of Defect Theorem,
shows that the prefix rank can be replaced by the free rank.

Remark 3. Finally, we emphasize, that due to Theorem 43, the rank of
an equation can be defined, in an equivalent way, by using the notion of the
rank we have defined for finite sets.

We have seen that words, i.e. free semigroups, have actually rather weak
dimension properties. However, the following fundamental result - Ehren-
feucht’s Compactness Theorem - shows that they are not extremely weak.

Theorem 44 (Ehrenfeucht’s Compactness Theorem). Each system of
equations over A+ and with a finite number of unknowns is equivalent to
some of its finite subsystems and hence any independent system of equations
over A∗ with a finite number of unknowns is finite.

Proof. Let Ξ be a finite set of unknowns in the equations

S : ui = vi for i ∈ I, (15)

and A∗ the free monoid, where the system is solved. We assume that equa-
tions are constant-free.

If |A| = 1 the result follows directly from linear algebra. All the other
cases (including the case |A| = ∞) are equivalent due to embeddings, cf.
Example 6 in Chapter 5,

A∗
i −→ A∗

2,

where Ai denotes the alphabet of size i. For convenience we denote

Ξ = {a0, a1, . . . , an−1}.

The basic idea in the proof is to convert a word equation into a pair of
polynomial equation over integers. This, in turn, becomes possible by the
fact that a word w over A can be interpreted as a number, namely the n-ary
number it presents.

Let
u = v with u, v ∈ Ξ+ (16)

be a word equation. We choose two copies of Ξ, say Ξ1 and Ξ2, and associate
to (16) the following pair of polynomial equations over Z:

{
l(u)− l(v) = 0

n(u)− n(v) = 0
, (17)
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where l and n are mappings from Ξ+ into the set of integer polynomials over
Ξ1 ∪ Ξ2, i.e. into Z〈Ξ1 ∪ Ξ2〉, defined recursively as follows:





l(a) = a1 for a ∈ Ξ

l(wa) = l(w)a1 for a ∈ Ξ, w ∈ Ξ+

n(a) = a2 for a ∈ Ξ

n(wa) = n(w)l(a) + n(a) for a ∈ Ξ, w ∈ Ξ+

. (18)

Clearly, the values l(w) and n(w) are well-defined polynomials over commut-
ing unknowns Ξ1 ∪ Ξ2. Note that the coefficients of the monomials of these
polynomial are in the set {−1, 0, 1}, which however is not important. Note
also that, by induction, the function n satisfies

n(ww′) = n(w)l(w′) + n(w′) for w,w′ ∈ Ξ+. (19)

Next we associate to a word

w = aik−1
. . . ai0 with aij ∈ A,

two numbers
δ(w) = ai0 + ai1n + · · · + aik−1

nk−1

and
δ0(w) = nk.

Consequently, δ(w) is the value of w as an n-ary number, and δ0(w) is the
value n|w|. This guides us to set δ(1) = 0 and δ0(1) = n0 = 1. Obviously the
correspondence

w ←→ (δ(w), δ0(w))

is one-to-one, and we use this to show that

h : Ξ∗ → A∗ is a solution of (17)

if and only if

the 2n-tuple (δ0(h(a0)), . . . , δ0(h(an−1)), δ(h(a0)), . . . , δ(h(an−1))) is a so-
lution of (16).

To prove this equivalence let us denote

s = (h(a0), . . . , h(an−1))

and
s1 = δ0(s) and s2 = δ(s),
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where δ0 and δ are applied componentwise.
First assume that s is a solution of (16), i.e. h(u) = h(v). Then

l(u)
∣∣
s1
= n|h(u)| = n|h(v)| = l(v)

∣∣
s1

,

showing that s1 is a solution of the equation l(u) − l(v) = 0. Similarly,
factorizing u = u′u′′, with h(u′), h(u′′) 6= 1, we conclude

n(u)
∣∣
s1,s2

(19)
= n(u′)

∣∣
s1,s2
· l(u′′)

∣∣
s1,s2

+ n(u′′)
∣∣
s1,s2

i.h.
= δ(h(u′))n|h(u′′)| + δ(h(u′′))

def.
= δ(h(u′u′′)) = δ(h(u)).

The above holds also, due to the definitions of δ(1) and δ0(1) as the basis of
induction, when there does not exist the above factorization. Similarly, we
conclude that

n(v)
∣∣
s1,s2

= δ(h(v)).

Consequently, the pair (s1, s2) is a solution of the equation n(u)− n(v) = 0.
Conversely, if a pair (s1, s2) is a solution of (17) then the above calcu-

lations show that δ(h(u)) = δ(h(v)) and δ0(h(u)) = δ0(h(v)), which implies
that h(u) = h(v), i.e. h is a solution of (16). Let

P : pj = pj(Ξ1, Ξ2), for j ∈ J,

be the set of polynomial equations obtained from word equations of S by
the formula (17). Next we use Hilbert’s Bases Theorem, which we prove in
a moment, and which says that P is finitely based, i.e. there exists a finite
subset P0 = {pj | j ∈ J0} of P such that each polynomial p in P can be
expressed as a linear combination of polynomials in P0:

p =
∑

j∈J0

qjpj with qj ∈ Z〈Ξ1 ∪ Ξ2〉.

Consequently, the systems

”pj = 0 for j ∈ J” and ”pj = 0 for j ∈ J0”

have exactly the same solutions. Therefore, by the beginning of the proof,
our original system S is equivalent to its subsystem consisting of those word
equations needed to determine (a super set of) P0.

To complete the proof of Theorem 44 we present also a proof of Hilbert’s
Bases Theorem. In what follows we consider polynomials with integer coef-
ficients and over a fixed (but arbitrary) finite set of commuting unknowns.
With these we formulate:
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Theorem 45 (Hilbert’s Bases Theorem). For each at most denumer-
able set P of polynomials there exists a finite subset P0 of P such that each
polynomial p can be expressed in the form

p =
r∑

i=1

qipi

with each pi in P0 and qi being a polynomial.

Proof. Let X be the set of unknowns of polynomials of P , and r = |X|. The
proof is by induction on r.

r = 0. Now P is an arbitrary set of integers. Let p0 be a number in P
having the minimal absolute value, and for each j = 1, . . . , |p0| − 1, let pj be
any element of P such that

pj ≡ j (mod p0),

if such an element exists. Then, clearly, we can choose

P0 = {p0} ∪ {pj | j = 1, . . . , |p0| − 1, pj is defined}

as a required set.
Induction step: We consider a set X ′ = X ∪ {x} of variables, where

|X| = r, and assume that the theorem holds for polynomials over X.
As an auxilary result we shall use the following fact. For a set Q of poly-

nomials let us define its linear closure Q as the set of all linear combinations
of polynomials in Q, i.e.

Q = {
n∑

i=1

siqi | n ≥ 1, qi ∈ Q and si is a polynomial}.

Further let us call Q linearly closed if Q = Q. Then we have

Claim. If Theorem 45 holds for linearly closed sets of polynomials it holds
for all set of polynomials.

Proof. Let Q be a set of polynomials. Clearly, Q is linearly closed and
hence finitely based; let Q0 be such a finite subset. But elements of Q0

are finite linear combinations of polynomials in Q. Hence, also Q is finitely
based.

Now, we are ready to prove the induction step. By claim we can assume
that P is linearly closed. Consider an arbitrary polynomial p in P , and write
it in the form

p = c0x
m + c1x

m−1 + · · · + cm, (20)
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where cj’s are polynomials over X. Let C be the set of polynomials c0 in (20).
By induction hypothesis, C is finitely based, i.e. each polynomial in C is a
linear combination of polynomials from a finite subset C0 of C. (Of course,
in these combinations coefficients are polynomials and not constants!). Next,
for each polynomial c in C0 choose a polynomial pc from P satisfying

pc = cxm + c′q(x),

where deg q ≤ m− 1 and c′ is a polynomial over X. Let

P ′
0 = {pc | c ∈ C0} = {pi | i = 1, . . . , t}.

and
M = max{m | pc ∈ P ′

0}.
Now let p ∈ P , and assume that m > M in its representation (20). By

the construction of P ′
0, we can write

p =
t∑

i=1

γipi + p′, (21)

where γi’s and p′ are polynomials over X ∪ {x}, and moreover the highest
exponent of x in p′ is ≤ m− 1.

We assumed that our original set P is linearly closed, and hence, by (21),
p′ is in P . Therefore the above procedure can be repeated, so that finally
we can assume in (21) that the highest exponent of x in p′ ≤ M , which is a
fixed constant.

Secondly, we consider polynomials pm of P , for which the number m
in their representations (20) are fixed and ≤ M . Repeating the argument
of the beginning of the proof, we conclude that there exists a finite set of
polynomials, say {p′1, . . . , p′s} such that any of the considered polynomial pm

can be expressed in the form

pm =
s∑

i1

γ′
ip

′
i + p′′,

where the highest exponent of x in p′′ is ≤ m− 1.
Obviously, we can repeat the second procedure for polynomials of lower

and lower, but fixed, degrees, so that finally we find the required finite subset
P0 as the union of sets obtained in each of the above steps, including that
for constructing P ′

0.
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We conclude with a few remarks

Remark 1. The proof of Theorem 44 has one very peculiar looking feature:
It connects a problem on word equation, i.e. on noncommuting unknowns,
to a problem of polynomial equations, i.e. on commuting unknowns!

Remark 2. Although it is not very visible in the above presentation of
the proof of Theorem 44, it is, or can be, based on the embedding of A∗ into
the multiplicative monoid of integer matrices, cf. Example 4 in Chapter 5.

Remark 3. The other unavoidable tool in the proof is Hilbert’s Bases
Theorem.
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