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Abstract. Quasiminimizers are almost minimizers of variational integrals.
Although quasiminimizers do not form a sheaf and do not provide a unique
solution to the Dirichlet problem it is shown that they form an interesting basis
for a potential theory. Quasisuperminimizers and their Poisson modifications
are considered as well as their convergence properties. Special attention is
devoted to the theory on the real line.
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1. Introduction

Quasiminimizers minimize a variational integral only up to a multiplicative
constant. More precisely, let Ω ⊂ R

n be an open set, K ≥ 1 and 1 ≤ p < ∞. In
the case of the p-Dirichlet integral, a function u belonging to the Sobolev space
W 1,p

loc (Ω) is a (p,K)-quasiminimizer or a K-quasiminimizer, if

(1.1)

∫

Ω′

|∇u|pdx ≤ K

∫

Ω′

|∇v|p dx
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for all functions v ∈ W 1,p(Ω′) with v − u ∈ W 1,p
0 (Ω′) and for all open sets Ω′

with a compact closure in Ω. A 1-quasiminimizer, called a minimizer, is a weak
solution of the corresponding Euler equation

(1.2) div(|∇u|p−2∇u) = 0.

Clearly being a weak solution of (1.2) is a local property. However, being a K-
quasiminimizer is not a local property as one-dimensional examples easily show.
This indicates that the theory for quasiminimizers differs from the theory for
minimizers and that there are some unexpected difficulties.

Quasiminimizers have been previously used as tools in studying the regular-
ity of minimizers of variational integrals, see [GG1–2]. The advantage of this
approach is that it covers a wide range of applications and that it is based only
on the minimization of the variational integrals instead of the corresponding Eu-
ler equation. Hence regularity properties as Hölder continuity and Lp-estimates
are consequences of the quasiminimizing property. It is an important fact that
nonnegative quasiminimizers satisfy the Harnack inequality, see [DT].

Instead of using quasiminimizers as tools, the objective of these lectures is to
show that quasiminimizers have a fascinating theory themselves. In particular,
they form a basis for nonlinear potential theoretic model with interesting fea-
tures. From the potential theoretic point of view quasiminimizers have several
drawbacks: They do not provide unique solutions of the Dirichlet problem, they
do not obey the comparison principle, they do not form a sheaf and they do
not have a linear structure even when the corresponding Euler equation is lin-
ear. However, quasiminimizers form a wide and flexible class of functions in the
calculus of variations under very general circumstances. Observe that the quasi-
minimizing condition (1.1) applies not only to one particular variational integral
but the whole class of variational integrals at the same time. For example, if a
variational kernel F (x,∇u) satisfies

(1.3) α|h|p ≤ F (x, h) ≤ β|h|p

for some 0 < α ≤ β < ∞, then the minimizers of
∫

F (x,∇u) dx

are quasiminimizers of the p-Dirichlet integral

(1.4)

∫

|∇u|p dx.

Hence the potential theory for quasiminimizers includes all minimizers of all
variational integrals similar to (1.4). The essential feature of the theory is the
control provided by the bounds in (1.3).

For example, the coordinate functions of a quasiconformal or, more generally,
quasiregular mapping are quasiminimizers of the n-Dirichlet integral

∫

|∇u|n dx
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in all dimensions n = 2, 3, . . . .

Recently quasiminimizers have been considered in metric measure spaces. This
means that a metric space (X, d) is equipped with a Borel measure µ which
satisfies some standard assumptions like the doubling property. The Sobolev
space W 1,p is replaced by the so called Newtonian space N1,p which for R

n and
the Lebesgue measure reduces to W 1,p. We do not consider metric spaces here
although most of the results hold in this case under appropriate conditions. For
this theory see [KM2].

2. Case n = 1

For n = 1 the definition (1.1) can be written in the following form: Let (a, b)
be an open interval in R and u ∈ W 1,p

loc (a, b). Then u is a (p,K)-quasiminimizer,
or K-quasiminimizer for short, if for all closed intervals [c, d] ⊂ (a, b)

(2.1)

d
∫

c

|u′|p dx ≤ K

d
∫

c

|v′|p dx

whenever u − v ∈ W 1,p
0 (c, d).

Now affine functions are minimizers, i.e. 1-quasiminimizers, for every p ≥ 1.
This fact can be easily deduced from the one dimensional version of (1.2) if p > 1.
For p = 1 this is trivial. Moreover, affine functions are the only minimizers for
p > 1. Thus choosing v(x) = α(x − c) + β where

α = (u(d) − u(c))/(d − c), β = u(c)

we see that u − v ∈ W 1,p
0 (c, d) and (2.1) yields

(2.2)

d
∫

c

|u′|pdx ≤ K
|u(d) − u(c)|p

|d − c|p−1
,

see [GG2]. The inequality (2.2) gives another definition for a K-quasiminimizer
u: the function u is a locally absolutely continuous function in (a, b) that satisfies
(2.2) on each subinterval [c, d] of (a, b).

Observe that u ∈ W 1,p(c, d) in a bounded open interval (c, d) means that u is
absolutely continuous on [c, d] with

(2.3)

d
∫

c

|u′|pdx < ∞.

If u ∈ W 1,p(c, d) and u − v ∈ W 1,p
0 (c, d), then v ∈ W 1,p(c, d) and v(c) =

u(c), v(d) = u(d). Functions u ∈ W 1,p
loc (a, b) are simply locally absolutely contin-

uous functions on (a, b) such that (2.3) holds in each subinterval [c, d] ⊂ (a, b).

We leave the following lemma as an exercise.
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Lemma 2.4. Suppose that u is a (p,K)-quasiminimizer in (a, b). Then u is a
monotone function. If p > 1 then u is either strictly monotone or constant.

The following lemma is more difficult to prove. It does not hold for p = 1.

Lemma 2.5. Let u be a (p,K)-quasiminimizer, p > 1, in an interval (a, b). If
b < ∞, then u has a continuous extension to b and (2.2) holds in all intervals
[c, d] ⊂ (a, b].

Proof. We may assume that u is increasing, b = 1, [0, 1] ⊂ (a, b] and u(0) = 0.

Fix 0 ≤ c < t < 1. Now
t
∫

c

u′ dx ≤ (t − c)(p−1)/p

( t
∫

c

u′p dx

)
1

p

≤ (t − c)(p−1)/p

( t
∫

0

u′p dx

)
1

p

≤ K
1

p

(t − c)
p−1

p

t
p−1

p

t
∫

0

u′ dx = K
1

p

(

1 −
c

t

)
p−1

p

t
∫

0

u′ dx

where we have used the Hölder inequality and (2.2). Next we choose c = 1 −

(2pK)
1

1−p . Then 0 < c < 1 and letting t ∈ (c, 1) we obtain
(

1 −
c

t

)
p−1

p

< (1 − c)
p−1

p =
1

2K
1

p

.

The above inequalities yield
t
∫

0

u′ dx =

c
∫

0

u′ dx +

t
∫

c

u′ dx ≤

c
∫

0

u′ dx +
1

2

t
∫

0

u′ dx

and hence

u(t) = u(t) − u(0) =

t
∫

0

u′ dx ≤ 2

c
∫

0

u′ dx = 2u(c).

Since u is increasing, letting t → 1 we obtain

u(b) = u(1) = lim
t→1

u(t) ≤ 2u(c) < ∞

and the last assertion of the lemma now follows from (2.2).

Lemma 2.5 shows that the natural domain of definition for a 1-dimensional
quasiminimizer is the closed interval [a, b].

Example 2.6. The function u(x) = xα, α > 1/2, is a (2, K)-quasiminimizer
in [0,∞) for K = α2/(2α − 1). This is a rather easy computation. Note that
u(x) = x1/2 is not a (2, K)-quasiminimizer in [0,∞) (and in (0,∞)) since u′ does
not belong to L2(0, 1).

We will consider one dimensional quasiminimizers again in Chapter 5. The
one dimensional case was first studied in [GG2].
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3. Properties of quasiminimizers

We start with a basic regularity property.

Theorem 3.1. Suppose that u is a (p,K)-quasiminimizer in Ω ⊂ R
n, p > 1. If

0 < r < R are such that the ball B(x, 2R) ⊂ Ω, then

osc(u,B(x, r)) ≤ C(r/R)αosc(u,B(x,R))

where C < ∞ and α ∈ (0, 1] depend on p, n and K only.

In particular Theorem 3.1 implies that u is locally Hölder continuous in Ω.

Another important property is the Harnack inequality.

Theorem 3.2. Let u be as in Theorem 3.1 and u ≥ 0. Then in each ball B(x,R)
such that B(x, 2R) ⊂ Ω

sup
B(x,R)

u ≤ C inf
B(x,R)

u

where the constant C depends on p, n and K only.

Since quasiminimizers are functions in W 1,p
loc (Ω) only, Theorem 3.1 also means

that they can be made continuous after redefinition on a set of measure zero.

For p > n, and hence for all p > 1 for n = 1, Theorem 3.1 follows from
the Sobolev embedding lemma. Note that for p = 1 = n quasiminimizers are
continuous but they need not be Hölder continuous.

We do not prove Theorems 3.1 and 3.2 here. The proof for Theorem 3.2 in
the case n = 1 is relatively simple, see [GG2]. For the proof of Theorem 3.1 the
De Giorgi method can be used. The basic tool is the Sobolev type inequality

(

∫

−

B(x,r)

|u|t dx

)1/t

≤ cr

(

∫

−

B(x,r)

|∇u|p dx

)1/p

for functions u ∈ W 1,p
0 (B(x, r)) where t > p. The main difficulty is to prove that

u is locally essentially bounded. For the proof see [GG1], [GG2] and [KS]. In the
paper [KS] metric measure spaces are considered and hence the regularity proof
of [KS] uses minimal assumptions.

In the general case n ≥ 2 the proof for Theorem 3.2 is rather complicated, see
[DT] and [KS]. The proof makes use of the Krylov–Safonov covering argument
[KSa]. Very recently it has turned out that the Moser method can be employed to
prove Theorems 3.1 and 3.2 for quasiminimizers even in metric measure spaces,
see [Ma].

In Potential Theory the Harnack inequality and Harnack’s principle are essen-
tially equivalent. From Theorem 3.1 and 3.2 it easily follows (p > 1): Suppose
that (ui) is an increasing sequence of K-quasiminimizers in a domain Ω. If
lim ui(x0) < ∞ at some point x0 ∈ Ω, then lim ui is a K-quasiminimizer.

We will return to the proof of this fact in the next chapter and in Appendix 2.
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4. Quasisuperminimizers, Poisson modifications and

regularity

Let Ω be an open set in R
n. A function u ∈ W 1,p

loc (Ω) is called a (p,K)-
quasisuperminimizer, or a K-quasisuperminimizer, if

(4.1)

∫

Ω′

|∇u|p dx ≤ K

∫

Ω′

|∇v|p dx

holds for all open Ω′ ⊂⊂ Ω and all v ∈ W 1,p
loc (Ω) such that v ≥ u a.e. in Ω′ and

v − u ∈ W 1,p
0 (Ω′).

Remarks 4.2. (a) A 1-quasisuperminimizer is called a superminimizer.

(b) A superminimizer is a supersolution of the p-harmonic equation

∇ · (|∇u|p−2∇u) = 0,

i.e. u satisfies
∫

Ω

|∇u|p−2∇u · ∇ϕdx ≥ 0

for all non–negative ϕ ∈ C∞
0 (Ω), see [HKM] for this theory. Observe that for

p = 2 every superharmonic (in the classical sense) function u is a superminimizer
provided that u belongs to W 1,2

loc (Ω), however, a superharmonic function need not

belong to W 1,2
loc (Ω). For n = 2 the classical example is u(x) = − log |x| which is

superharmonic in R
2 but does not belong to W 1,2(B(0, 1)). We return to this

problem in Chapter 6.

(c) The inequality (4.1) can be replaced by several other inequalities, for
example

∫

Ω′\E

|∇u|p dx ≤ K

∫

Ω′\E

|∇v|p dx,

where E ⊂ Ω′ \ {u 6= v} is any measurable set. For the list of these conditions
see [B] and [KM2].

A function u is called a K-quasisubminimizer if −u is a K-quasisuperminimizer.

Note that if u is a K-quasisuperminimimizer, then αu and u + β are K-
quasisuperminimizers when α ≥ 0 and β ∈ R. However, the sum of two K-
quasisuperminimizers need not be a K-quasisuperminimizer even in the case
p = 2.

Lemma 4.3. Suppose that ui, i = 1, 2, are Ki-quasisuperminimizers in Ω. Then
min(u1, u2) is a K-quasisuperminimizer in Ω with K = min(K1K2, K1 + K2).

Proof. We prove that u = min(u1, u2) is a K-quasisuperminimizer with K ≤
K1K2; this inequality is important in applications. The proof for K ≤ K1 + K2

is similar, see [KM2]. To this end let Ω′ ⊂⊂ Ω be an open set and v − u ∈
W 1,p

0 (Ω′), v = u in Ω \ Ω′ and v ≥ u. Now
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∫

Ω′

|∇u|p dx =

∫

{u1≤u2}∩Ω′

|∇u1|
p dx +

∫

{u1>u2}∩Ω′

|∇u2|
p dx

and write w = max(min(u2, v), u1). Then w ≥ u1 a.e. in Ω′, w − u1 ∈ W 1,p
0 (Ω′)

and w = u1 if u1 > u2. Thus the quasisuperharmonicity of u1, see Remark 4.2
(c), yields
∫

{u1≤u2}∩Ω′

|∇u1|
p dx ≤ K1

∫

{u1≤u2}∩Ω′

|∇w|p dx

= K1

∫

{u1≤u2}∩{v<u2}∩Ω′

|∇v|p dx + K1

∫

{u1≤u2}∩{v≥u2}∩Ω′

|∇u2|
p dx.

¿From these inequalities we obtain
∫

Ω′

|∇u|p dx ≤ K1

∫

{u1≤u2}∩{v<u2}∩Ω′

|∇v|p dx

+ K1

∫

{u1≤u2}∩{v≥u2}∩Ω′

|∇u2|
p dx +

∫

{u1>u2}∩Ω′

|∇u2|
p dx

≤ K1

∫

{u1≤u2}∩{v<u2}∩Ω′

|∇v|p dx + K1

∫

{v≥u2}∩Ω′

|∇u2|
p dx.

Note that Ω′ ∩{u1 > u2} ⊂ Ω′ ∩{v ≥ u2}. On the other hand max(u2, v)− u2 ∈
W 1,p

0 (Ω′), max(u2, v) ≥ u2 and max(u2, v) − u2 = 0 in {v ≤ u2} and hence the
quasisuperharmonicity of u2 implies

∫

{v≥u2}∩Ω′

|∇u2|
p dx ≤ K2

∫

{v≥u2}∩Ω′

|∇v|p dx.

This together with the previous inequality completes the proof.

The following corollary is important.

Corollary 4.4. Suppose that u is a K-quasisuperminimizer and h is a super-
minimizer in Ω. Then min(u, h) is a K-quasisuperminimizer in Ω.

Remark 4.5. Lemma 4.3 and Corollary 4.4 are the counterparts of a prop-
erty of classical superharmonic functions: If u1 and u2 are superharmonic, then
min(u1, u2) is superharmonic.

Corollary 4.4 implies the necessity part of the following result. The other half
follows from Theorem 4.14 below.

Lemma 4.6. Suppose that u ∈ W 1,p
loc (Ω). Then u is a K-quasisuperminimizer,

p > 1, if and only if min(u, c) is a K-quasisuperminimizer for each c ∈ R.
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The Poisson modification is an important tool in Potential Theory. In the
classical case p = 2 this means the following: Let u be superharmonic in Ω
and u ∈ W 1,2

loc (Ω) (this assumption is not actually needed). If Ω′ ⊂⊂ Ω is an
open set let h be a minimizer (harmonic) in Ω′ with boundary values u, i.e.
u − h ∈ W 1,2

0 (Ω′). The Poisson modification of u in Ω′ is defined as

(4.7) P (u, Ω′) =

{

h in Ω′,
u in Ω \ Ω′.

Then P (u, Ω′) is a superharmonic function in Ω, P (u, Ω′) ≤ u and P (u, Ω′) is
harmonic in Ω′. This theory works well for superminimizers for all p > 1, see
[HKM].

For quasisuperminimizers the above method does not work as above. In partic-
ular there exists a K-quasisuperminimizer (even a K-quasiminimizer) u such that
the function P (u, Ω′) in (4.7) is not a K ′-quasisuperminimizer for any K ′ < ∞.
The example is one dimensional and requires some computation. However, there
are two replacements for P (u, Ω′).

The first Poisson modification is a modification of (4.7). Let u be a K-
quasisuperminimizer in Ω, p > 1, and Ω′ ⊂⊂ Ω an open set. Let h be the
minimizer with boundary values u in Ω′, i.e. u − h ∈ W 1,p

0 (Ω′). Observe that
such a unique function h exists - this is a basic result in the theory of Sobolev
spaces, see e.g. [HKM]. Let

(4.8) P1(u, Ω′) =

{

min(u, h) in Ω′,
u in Ω \ Ω′.

Theorem 4.9. [KM2] The function P1(u, Ω′) is K-quasisuperminimizer in Ω.

By the construction of P1(u, Ω′), P1(u, Ω′) ≤ u in Ω. Note also that if u is a
K-quasiminimizer, then P1(u, Ω′) is also a K-quasiminimizer in Ω′ by Corollary
4.4.

Next we consider another possibility for a Poisson modification. For this we
need to consider obstacle problems. The obstacle method is the most important
method in the nonlinear potential theory. Let Ω ⊂ R

n be an open set and
u ∈ W 1,p(Ω). Write

K+
u (Ω) = {v ∈ W 1,p(Ω) : v − u ∈ W 1,p

0 (Ω), v ≥ u a.e. in Ω}.

The class K−
u is defined similarly but v ≥ u is replaced by v ≤ u. The following

result is well-known.

Lemma 4.10. [HKM] The obstacle problem

inf
v∈K−

u (Ω)

∫

Ω

|∇v|pdx, p > 1,

has a unique solution u− ∈ K−
u (Ω). Moreover, u− is a subminimizer and contin-

uous if u is continuous.
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A similar result holds for the class K+
u (Ω) and the solution is a superminimizer.

Suppose now that u is a K-quasisuperminimizer in Ω and Ω′ ⊂⊂ Ω is open.
Let u− be the solution to the K−

u (Ω′)-obstacle problem. Define

(4.11) P2(u, Ω′) =

{

u− in Ω′,
u in Ω \ Ω′.

Theorem 4.12. The function P2(u, Ω′) is a K-quasisuperminimizer in Ω, a
subminimizer in Ω′ and a K-quasiminimizer in Ω′.

The proof for Theorem 4.12 is in Appendix 1.

Superharmonic functions in the classical potential theory are lower semicon-
tinuous. It turns out that quasisuperminimizers can be defined pointwise and
the resulting function is lower semicontinuous.

Theorem 4.13. [KM2] Suppose that u is a K-quasisuperminimizer in Ω, p > 1.
Then the function u∗ : Ω → (−∞,∞] defined by

u∗(x) = lim
r→0

ess inf
B(x,r)

u

is lower semicontinuous and u∗ = u a.e. (u and u∗ are the same function in
W 1,n

loc (Ω)).

The proof for Theorem 4.13 is based on the De Giorgi method that is used to
prove a weak Harnack inequality

(

∫

−

B(x,r)

uσ dx

)1/σ

≤ c ess inf
B(x,3r)

u

for a K-quasisuperharmonic function u ≥ 0. Here B(x, 5r) ⊂ Ω and c and σ > 0
depend only on n, p > 1 and K.

The following is Harnack’s principle for quasisuperminimizers.

Theorem 4.14. Suppose that (ui) is an increasing sequence of K-quasisupermini-
mizers in Ω, p > 1. If u = lim ui is such that either

(i) u is locally bounded above or
(ii) u ∈ W 1,p

loc (Ω),

then u is a K-quasisuperminimizer.

The proof for Theorem 4.14 is somewhat tedious. It is presented in Appen-
dix 2.
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5. More about n = 1

We take a closer look at the case n = 1. Recall that a superminimizer is a
1-quasisuperminimizer. The next result is easy to prove, see [MS].

Lemma 5.1. Suppose that u : [a, b] → R is a superminimizer, p > 1. Then u is
a concave function.

¿From Lemma 5.1 it follows that a superminimizer is a Lipschitz function in
each interval [c, d] ⊂⊂ (a, b). It need not be a Lipschitz function in [a, b].

How regular are K-quasiminimizers and K-quasisuperminimizers? The an-
swer is not known for n ≥ 2 but for n = 1 some exact answers have been
obtained.

Let 1 < p < ∞ and let ω : [a, b] → [0,∞) be a weight in L1(a, b). Set

Gp(ω) = sup
I

(

∫

−

I

ωp dx

)
1

p

(

∫

−

I

ω dx

)−1

where the supremum is taken over all intervals I ⊂ [a, b]. If Gp(ω) < ∞, then ω
is said to belong to the Gp-class of Gehring.

For a non-constant quasiminimizer u in [a, b] set

Kp(u) = sup
[c,d]

d
∫

c

|u′|p dx
(d − c)p−1

|u(d) − u(c)|p

where the supremum is taken over all intervals [c, d] ⊂ [a, b]. In other words,
Kp(u) is the least constant in (2.2). The following lemma is immediate.

Lemma 5.2. Let u : [a, b] → R be absolutely continuous and non-constant with
u′ ≥ 0 a.e. Then u is Kp(u)-quasiminimizer with exponent p, p > 1, if and only

if u′ belongs to the Gp-class with Gp(u
′) = Kp(u)

1

p .

A. Korenovskii [K] has determined the optimal higher integrability bound p0 =
p0(p,K) for a weight ω in the Gp-class. Hence Lemma 5.2 enables us to determi-
nate the optimal integrability bound for the derivative of a Kp-quasiminimizer.
Let γp,t : [p,∞) → R, p > 1, t > 1, be the function

γp,t(x) = 1 − tp
x − p

x
(

x

x − 1
)p,

and let p1(p, t) ∈ (p,∞) be the unique solution of the equation γp,t(x) = 0. For
the properties of p1(p, t) see [DS, Section 3].

Theorem 5.3. Suppose that u is a (p,K)-quasiminimizer, p ≥ 1, K ≥ 1, in

[a, b]. Then u′ ∈ Ls(a, b) for 1 ≤ s < p1(p,K
1

p ) if p > 1 and K > 1, u′ ∈ L1(a, b)
if p = 1 and u′ ∈ L∞(a, b) if p > 1 and K = 1. All these integrability conditions
are sharp.
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Proof. Let first p > 1 and K > 1. We may assume that u is increasing. By

Lemma 5.2, Gp(u
′) = Kp(u)

1

p and from [K, Theorem 2] we conclude that u′ ∈

Ls(a, b) for 1 ≤ s < p1(p,Gp(u
′)) = p1(p,Kp(u)

1

p ).

If p > 1 and K = 1, then u is affine and hence u′ ∈ L∞(a, b). For p = 1, u′

trivially belongs to L1(a, b).

To see that the bound α = p1(p,K
1

p ) is sharp for p > 1 and K > 1 it suffices
to consider the interval [0, 1]. The function

u(x) =
α

α − 1
x

α−1

α , x ∈ [0, 1],

has the derivative u′(x) = x− 1

α and a direct computation shows that u′ belongs

to the Gehring class with Gp(u
′) = K

1

p , see [DS, Proposition 2.3]. By Lemma 5.2
u is a K-quasiminimizer. On the other hand, u′ does not belong to Lα(0, 1). This

shows that the open ended upper bound p1(p,K
1

p ) is sharp.

For p = 1 the integrability of u′ cannot be improved since every increasing
absolutely continuous function u is a 1-quasiminimizer. The theorem follows.

Remark 5.4. For p = 2,

p1(2, t) = 1 + t(t2 − 1)−
1

2 , t > 1,

and hence
p1(2, K

1

2 ) = 1 + K
1

2 (K − 1)−
1

2 , K > 1.

In [MS] the inverse functions of one dimensional quasiminimizers are also
considered.

6. Quasisuperharmonic functions

In the nonlinear potential theory superharmonic functions can be defined in
many ways. The most natural definition uses the comparison principle, see (6.3)
below. Let p > 1 and let Ω be an open set in R

n. A function u : Ω → (−∞,∞]
is said to be superharmonic, i.e. (p, 1)-superharmonic, if

(6.1) u is lower semicontinuous,
(6.2) u 6≡ ∞ in any component of Ω,

(6.3) for each open set Ω′ ⊂⊂ Ω and each minimizer h ∈ C(Ω
′
), i.e. (p, 1)-

quasiminimizer, the inequality u ≥ h on ∂Ω′ implies u ≥ h in Ω′.

For the theory of superharmonic functions in the nonlinear situation see [HKM].

Superharmonic functions can also be defined with the help of minimizers, see
[HKM, Theorem 7.10] and [HKM, Corollary 7.20]. For other definitions see [B].

Lemma 6.4. Suppose that u : Ω → (−∞,∞] satisfies (6.1) and (6.2). Then
u is (p, 1)-superharmonic if and only if there is an increasing sequence (u∗

i ) of
(p, 1)-quasisuperminimizers, i.e. superminimizers, with u = lim u∗

i . Here u∗
i is

the lower semicontinuous representative of a superminimizer ui.
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Note that given a superharmonic function u the sequence u∗
i = min(u, i), i =

1, 2, . . ., is the required sequence.

In view of Lemma 6.4 the following definition for (p,K)-quasisuperharmonicity
is natural.

Definition 6.5. Let Ω ⊂ R
n be an open set, p > 1 and K ≥ 1. A function

u : Ω → (−∞,∞] is said to be (p,K)-quasisuperharmonic if there is an increasing
sequence of K-quasisuperminimizers ui in Ω such that lim u∗

i = u and u 6≡ ∞ in
each component of Ω.

Lemma 6.6. Suppose that u is a (p,K)-quasisuperharmonic function in Ω and
locally bounded above. Then u is a (p,K)-quasisuperminimizer.

Proof. By the definition for quasisuperharmonicity there is an increasing se-
quence of quasisuperminimizers u∗

i : Ω → (−∞,∞) such that lim u∗
i = u. From

Theorem 4.14 it follows that u is a K-quasisuperminimizer as required.

Note that a (p,K)-quasisuperharmonic function is automatically lower semi-
continuous as a limit of an increasing sequence of lower semicontinuous functions.

Lemma 6.7. Let u be a K-quasisuperharmonic function in Ω and h a (contin-
uous) minimizer in Ω. Then min(u, h) is a K-quasisuperminimizer (and hence
K-quasisuperharmonic) in Ω.

Proof. Let u∗
i be an increasing sequence of K-quasisuperminimizers in Ω such

that u∗
i → u. Now min(u∗

i , h) is lower semicontinuous and by Corollary 4.4,
min(u∗

i , h) is a K-quasisuperminimizer. Since min(u∗
i , h) ≤ h, it follows that

min(u, h) = lim min(u∗
i , h) is a K-quasisuperharmonic function. By Lemma 6.6,

min(u, h) is a K-quasisuperminimizer.

Theorem 6.8. Suppose that u : Ω → (−∞,∞] satisfies (6.1) and (6.2). Then u
is a K-quasisuperharmonic if and only if min(u, c) is a K-quasisuperminimizer
for each c ∈ R.

Proof. The only if part follows from Lemma 6.7. For the sufficiency choose c =
i, i = 1, 2, . . .. Then min(u, i) is a lower semicontinuous K-quasisuperminimizer
and it follows from Definition 6.5 that u is a K-quasisuperharmonic function.

The theory for K-quasisuperharmonic functions is still in its infancy. However,
the following result was proved in [KM2]: A set C ⊂ R

n is said to be (p,K)-polar,
if there is a neighborhood Ω of C and a (p,K)-quasisuperharmonic function u in
Ω such that u(x) = ∞ for each x ∈ C. Then C is a (p,K)-polar set if and only
if the p-capacity of C is zero. It has been previously known that a set C ⊂ R

n

is a (p, 1)-polar set if and only if the p-capacity of C is zero. Hence allowing the
freedom due to K ≥ 1 adds nothing new to the structure of polar sets.

7. Appendix 1

Proof for Theorem 4.12. That P2(u, Ω′) is a subminimizer in Ω′ follows
from Lemma 4.9. In order to show that w = P2(u, Ω′) is a K-quasisuperminimizer



Quasiminimizers and Potential Theory 201

in Ω let Ω′′ ⊂⊂ Ω be open and v a function such that v − w ∈ W 1,p
0 (Ω′′) and

v ≥ w in Ω′′. We set v = w in Ω \Ω′′. For the K-quasisuperminimizing property
of w it suffices to show

(a)

∫

Ω′′∩{w<v}

|∇w|pdx ≤ K

∫

Ω′′∩{w<v}

|∇v|pdx.

Hence we may assume that w < v in Ω′′ although Ω′′ ∩ {w < v} need not be
an open set. Write A = {x ∈ Ω : u(x) < v(x)}. Then A ⊂ Ω′′ because if
x ∈ A \ Ω′′, then u(x) < v(x) = w(x) which is a contradiction since u ≥ w. The
quasisuperminimizing property of u yields

(b)

∫

A

|∇u|pdx ≤ K

∫

A

|∇v|pdx,

see Remark 4.2 (c). The function min(u, v) satisfies w ≤ min(u, v) ≤ u in Ω and
min(u, v) can be continued as w to Ω′′ \ {w < u}. The resulting function is in
the right Sobolev space. Note also that min(u, v) = w outside Ω′′ ∩ Ω′ and that
min(u, v) and w coincide outside {w < u} ∩ Ω′′ in Ω. Since w is the solution
to the K−

u (Ω′)-obstacle problem, w ≤ min(u, v) and min(u, v) has the correct
boundary values w in {w < u} ∩ Ω′′, we obtain

(c)

∫

{w<u}∩Ω′′

|∇w|p dx ≤

∫

{w<u}∩Ω′′

|∇min(u, v)|p dx

=

∫

{w<u}∩Ω′′∩{u<v}

|∇u|p dx +

∫

{w<u}∩Ω′′∩{u≥v}

|∇v|p dx.

Since

(Ω′′ ∩ {w = u}) ∪ ({w < u} ∩ Ω′′ ∩ {u < v}) ⊂ Ω′′ ∩ {u < v},

the inequalities (b) and (c) yield
∫

Ω′′

|∇w|pdx =

∫

Ω′′∩{w=u}

|∇u|p dx +

∫

Ω′′∩{w<u}

|∇w|p dx

≤

∫

Ω′′∩{w=u}

|∇u|p dx +

∫

{w<u}∩Ω′′∩{u<v}

|∇u|p dx

+

∫

{w<u}∩Ω′′∩{u≥v}

|∇v|p dx

≤

∫

Ω′′∩{u<v}

|∇u|p dx +

∫

{w<u}∩Ω′′∩{u≥v}

|∇v|p dx

≤ K

∫

Ω′′∩{u<v}

|∇v|p dx +

∫

{w<u}∩Ω′′∩{u≥v}

|∇v|p dx ≤ K

∫

Ω′′

|∇v|p dx.
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This is (a). We leave to an exercise to show that w is a K-quasiminimizer in Ω′.
The proof is complete.

8. Appendix 2

Proof for Theorem 4.14. We show that the quasisuperminimizing property
is preserved under the increasing convergence if the limit is locally bounded above
or belongs to W 1,p

loc (Ω).

The proof of this theorem [KM2, Theorem 6.1] contains a gap which will be
settled here. The argument is quite similar as in [KM2]. The authors would like
to thank professor Fumi–Yuki Maeda for pointing out the error in the original
paper.

We consider the case (i) only. The case (ii) follows from (i) and from an easy
truncation argument, see [KM2, p. 477]. In the case (i) it follows from the De
Giorgi type upper bound

∫

B(x,ρ)

|∇ui|
p dx ≤ c(R − ρ)−p

∫

B(x,R)

(ui − k)p dx,

where

k < − sup{ess sup
B(x,R)

ui : i = 1, 2, . . .},

0 < ρ < R and B(x,R) ⊂⊂ Ω, that the sequence (|∇ui|) is uniformly bounded
in Lp(Ω′) for every Ω′ ⊂⊂ Ω. This implies that u ∈ W 1,p

loc (Ω) and we may assume
that (|∇ui|) converges weakly to ∇u in Lp(Ω′).

Let C ⊂ Ω be a compact set and for t > 0 write

C(t) = {x ∈ Ω : dist(x,C) < t}.

Then C(t) ⊂⊂ Ω for 0 < t < dist(C, ∂Ω) = t0.

Lemma 8.1. Let u and ui be as in Theorem 4.12. Then for almost every t ∈
(0, t0) we have

lim sup
i→∞

∫

C(t)

|∇ui|
p dx ≤ c

∫

C(t)

|∇u|p dx

where the constant c depends only on K and p.

Proof. Let 0 < t′ < t < t0 and choose a Lipschitz cut-off function η such that
0 ≤ η ≤ 1, η = 0 in Ω \ C(t) and η = 1 in C(t′). Let

wi = ui + η(u − ui), i = 1, 2, . . . .
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Then wi − ui ∈ W 1,p
0 (C(t)) and wi ≥ ui a.e. in C(t). Hence the quasisupermini-

mizing property of ui gives
∫

C(t′)

|∇ui|
p dx ≤

∫

C(t)

|∇ui|
p dx ≤ K

∫

C(t)

|∇wi|
p dx

≤ αK

(

∫

C(t)

(1 − η)p|∇ui|
p dx

+

∫

C(t)

|∇η|p(u − ui)
p dx +

∫

C(t)

ηp|∇u|p dx

)

,

where α = 2p−1. Adding the term

αK

∫

C(t′)

|∇ui|
p dx

to the both sides and taking into account that η = 1 in C(t′) we obtain

(1 + αK)

∫

C(t′)

|∇ui|
p dx ≤ αK

∫

C(t)

|∇ui|
p dx

+αK

∫

C(t)

|∇η|p(u − ui)
p dx + αK

∫

C(t)

|∇u|p dx.

Set Ψ : (0, t0) → R,

Ψ(t) = lim sup
i→∞

∫

C(t)

|∇ui|
p dx.

Now −ui belongs to the De Giorgi class (see [KM2, Lemma 5.1]), and hence Ψ
is a finite valued and increasing function of t. Hence the points of discontinuity
form a countable set. Let t, 0 < t < t0, be a point of continuity of Ψ. Letting
i → ∞, we obtain from the previous inequality the estimate

(1 + αK)Ψ(t′) ≤ αKΨ(t) + αK

∫

C(t)

|∇u|p dx,

because
∫

C(t)

|∇η|p(u − ui)
p dx → 0

as i → ∞ by the Lebesgue monotone convergence theorem. Since t is a point of
continuity of Ψ, we conclude that

(1 + αK)Ψ(t) ≤ αKΨ(t) + αK

∫

C(t)

|∇u|p dx,
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or in other words

Ψ(t) ≤ αK

∫

C(t)

|∇u|p dx.

Proof of Theorem 4.14, case (i). As noted before u ∈ W 1,p
loc (Ω). Let Ω′ ⊂⊂ Ω

be open and v ∈ W 1,p(Ω′), v ≥ u almost everywhere and v − u ∈ W 1,p
0 (Ω′). By

[KM2, Lemma 6.2] it suffices to show that

(a)

∫

Ω′

|∇u|p dx ≤

∫

Ω′

|∇v|p dx.

To this end let ε > 0 and choose open sets Ω′′ and Ω0 such that

Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω0 ⊂⊂ Ω

and

(b)

∫

Ω0\Ω′

|∇u|p dx < ε.

Next choose a Lipschitz cut-off function η with the properties η = 1 in a neigh-
borhood of Ω′, 0 ≤ η ≤ 1 and η = 0 on Ω \ Ω′′. Set

wi = ui + η(v − ui), i = 1, 2, . . . .

Then wi − ui ∈ W 1,p
0 (Ω′′) and wi ≥ ui. Thus

(

∫

Ω′′

|∇wi|
p dx

)1/p

≤

(

∫

Ω′′

((1 − η)|∇ui|
p + η|∇v|)p dx

)1/p

+

(

∫

Ω′′

|∇η|p(v − ui)
p dx

)1/p

= αi + βi.

The elementary inequality

(αi + βi)
p ≤ αp

i + pβi(αi + βi)
p−1

implies that

(c)

∫

Ω′′

|∇wi|
p dx ≤

∫

Ω′′

(1 − η)|∇ui|
p dx +

∫

Ω′′

η|∇v|p dx + pβi(αi + βi)
p−1,

where we also used the convexity of the function t 7→ tp. We estimate the terms
on the right-hand side separately.

Since η = 1 in a neighborhood of Ω′, there is a compact set C ⊂ Ω′′ such that
C ∩ Ω′ = ∅ and

∫

Ω′′

(1 − η)|∇ui|
p dx ≤

∫

C

|∇ui|
p dx.
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We can choose C = Ω′′ \ Ω′(t) for sufficiently small t > 0. Next choose t > 0
such that

lim sup
i→∞

∫

C(t)

|∇ui|
p dx ≤ c

∫

C(t)

|∇u|p dx

and C(t) ⊂ Ω0 \ Ω′. This is possible by Lemma 8.1. We have

lim sup
t→∞

∫

Ω′′

(1 − η)|∇ui|
p dx ≤ lim sup

i→∞

∫

C

|∇ui|
p dx

≤ lim sup
i→∞

∫

C(t)

|∇ui|
p dx ≤ c

∫

C(t)

|∇u|p dx ≤ cε

where the last inequality follows from (b). Since ∇η = 0 in Ω′ and v = u in
Ω′′ \ Ω′ the Lebesgue monotone convergence theorem yields βi → 0 as i → ∞.
On the other hand the numbers αi remain bounded as i → ∞. Hence it follows
from (c) that

lim sup
i→∞

∫

Ω′′

|∇wi|
p dx ≤ cε +

∫

Ω′′

η|∇v|p dx ≤ cε +

∫

Ω′′

|∇v|p dx.

Now ui is a K-quasisuperminimizer and hence for large i it follows that
∫

Ω′

|∇ui|
p dx ≤

∫

Ω′′

|∇ui|
p dx ≤ K

∫

Ω′′

|∇wi|
p dx ≤ 2Kcε + K

∫

Ω′′

|∇v|p dx

≤ 2Kcε + K

∫

Ω′

|∇v|p dx + K

∫

Ω′′\Ω′

|∇v|p dx

≤ 3Kcε + K

∫

Ω′

|∇v|p dx,

where we used (b) and the fact that ∇u = ∇v in Ω′′ \ Ω′. Since ε > 0 was
arbitrary and since

∫

Ω′

|∇u|p dx ≤ lim inf
i→∞

∫

Ω′

|∇ui|
p dx

by the weak convergence ∇ui → ∇u in Lp(Ω′), this completes the proof of (a)
and the proof for the case (i) is complete.
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[BBS] Björn, A., J. Björn and N. Shanmugalingam, The Perron method for p-harmonic
functions, J. Differential Equations 195 (2003), 398-429.



206 O. Martio IWQCMA05

[BJ1] Björn, J., Poincaré inequalities for powers and products of admissible weights, Ann.
Acad. Sci. Fenn. Math. 26 (2001), 175-188.

[BJ2] Björn, J., Boundary continuity for quasiminimizers on metric spaces, Illinois J. Math.
46 (2002), 383-403.

[DS] D’Apuzzo, L. and C. Sbordone, Reverse Hölder inequalities. A sharp result, Rend.
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1 (1984), 79-104.

[G] Giaquinta, M: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic

Systems, Ann. of Math. Studies 105, Princeton Univ. Press, 1983.
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enhoupt’s conditions, Transl. from Matem. Zametki, 52(6) (1992), 32-44.
[Ma] Marola, N., Moser’s method for minimizers on metric measure spaces, Helsinki Uni-

versity of Technology, Institute of Mathematics, Research Reports A 478, 2004.
[MS] Martio, O. and C. Sbordone, Quasiminimizers in one dimension – Integrability of the

derivative, inverse function and obstacle problems, Ann. Mat. Pura Appl., to appear.
[Sh1] Shanmugalingam, N., Newtonian spaces: An extension of Sobolev spaces to metric

measure spaces, Revista Math. Iberoamericana 16 (2000), 243-279.
[Sh2] Shanmugalingam, N., Harmonic functions on metric spaces, Illinois J. Math. 45

(2001), 1021-1050.
[Sh3] Shanmugalingam, N., Some convergence results for p-harmonic functions on metric

measure spaces, Proc. London Math. Soc. 87 (2003), 226-246.

Olli Martio E-mail: olli.martio@helsinki.fi
Address: Department of Mathematics and Statistics, BOX 68, FI-00014 University of Helsinki,

FINLAND


