Divisibility Problem for one relator Monoids

S.I.Adian

Steklov Mathematical Institute Gubkina str. 8, 117966 Moscow, RUSSIA e-mail: si@adian.mian.su

We consider monoids presented by one defining relation in 2 generators:

 $M =$. (1)

Denote $A_1 = aU$ and $A_2 = bV$.

We say that the word *X* is left side divisible by *Y* in *M* if there exists a word *Z* such that $X = YZ$ in *M*. The left side divisibility problem for M is the requirement to find an algorithm to recognize for any two words *X* and *Y* , whether or not *X* is left side divisible by *Y* in *M*?

The following theorem was proved in [1,2,3].

Theorem 1 The word problem for any 1-relator monoids can be reduced to the left side divisibility problem for monoids *M* presented in 2 generators by 1 defining relation of the form $aU = bV$. For the solution of this problem it sufficies to find an algorithm to recognize for any word *aW* (or for any word *bW*) whether or not it is left side divisible in *M* by the letter *b* (accordingly by the letter *a*).

Algorithm a

The algorithm α was introduced in [2] for a more general case of monoids presented by any cyclefree system of relations. Here we shall apply this algorithm to the case of the monoid *M*.

The algorithm **a** was used in several papers for a solution of the left side divisibility problem for monoids *M* under some additional conditions.

To apply this algorithm one should find another algorithm \mathfrak{B} that decides for any word aW , whether or not the algorithm α terminates when applied to *aW*.

For the given word aW the algorithm α finds the uniquely defined *prefix decomposition* which is either of the form

$$
aW = P_1 P_2 \dots P_k P_{k+1},\tag{2}
$$

where each P_i is the maximal nonempty proper common prefix of the word $P_i P_{i+1} \ldots P_{k+1}$ and the appropriate relator aU or *bV* , or of the form

$$
aW = P_1 P_2 \dots P_k A_{j_k} W_{k+1},\tag{3}
$$

where the prefixes P_i are defined in a similar way, but the segment A_{j_k} is one of the relators of the monoid M. We call the segment A_{j_k} the head of the decomposition (3).

Let us describe in details how our algorithm α works.

Suppose we have an initial word *aW*. Consider the Maximal Common Prefix of two words *aW* and *A*¹ and denote it by

$$
P_1 = MCP(aW, A_1). \tag{4}
$$

We have $aW = P_1W_1$ and $aU = P_1U_1$ for some W_1 and U_1 .

Clearly P_1 is not empty. We consider the following 2 cases.

Case 1. If U_1 is empty, then $aW = aUW_1$. So we have a prefix decomposition of the form (3) for $k = 0$.

In this case the algorithm α replaces in aW the segment aU by bV . So we obtain $aW = bVW_1$ in M. Hence aW is left side divisible by *b* in *M*.

Case 2. Let U_1 be not empty. Then P_1 is a proper prefix of *aU*.

If *W*¹ is empty then *aW* is a proper segment of the relator aU . It is easy to prove that the proper segment P_1 of aU is not divisible by *b* in *M*.

Hence we can assume that U_1 and W_1 both are nonempty. It follows from (4) that in this case they have different initial letters *a* and *b*.

In this case to prolong the prefix P_1 of aU in P_1W_1 to the right side we should divide W_1 by *b* if it starts by *a* or divide W_1 by *a* if it starts by *b*. So the situation is similar to the initial one.

Now in a similar way we consider the nonempty word $P_2 =$ $MCP(W_1, A_i)$, where A_{i_1} is the relator of M which has a common initial letter with W_1 .

Suppose $W_1 = P_2 W_2$ and $A_j = P_2 U_2$. Then again we consider 2 cases.

Case 2.1. If U_2 is empty, then $W_1 = A_j W_1$.

In this case we have the following prefix decomposition of the word *aW*:

$$
aW = P_1 A_{j_1} W_2,
$$

where A_{j_1} is called the head.

Case 2.2. Let U_2 be nonempty.

In this case if W_2 is empty then $aW = P_1P_2$ where P_2 is a proper segment of of the relator A_{j_1} . Hence we obtained for aW a prefix decomposition of the form (2). It is easy to prove that the word P_1P_2 is not divisible by *b* in *M*.

Hence we can assume that U_2 and W_2 both are nonempty. It follows from (4) that in this case they have different initial letters *a* and *b*.

In this case to prolong the prefix P_2 of A_{j_1} in $P_1P_2W_2$ we should divide W_2 by *b* if it starts by *a*, or divide W_2 by *a* if it starts by *b*. So the situation again is similar to the initial one.

Hence we can consider the nonempty word $P_3 = MCP(W_2,$ A_{j_2} , where A_{j_2} is one of the relators of *M* which has the common initial letter with the word W_2 . And so on. The length of the word W_i is decreasing. So after a finite number of steps either we shall find some prefix decomposition of the form (3) with the head A_{i_k} or we shall stop on some decomposition of the form (2).

It is easy to prove that if the decomposition of *aW* is of the form (2), then the word *aW* in *M* is not left side divisible by *b*.

If the decomposition is of the form (3) , then the algorithm α replaces the head A_i in *aW* by the another relator in (1): aU should be replaced by *bV* or *bV* by *aU*. Hence we get one of the following elementary transformations in the monoid *M*:

$$
aW = P_1 P_2 \dots P_k aUW_{k+1} \rightarrow P_1 P_2 \dots P_k bVW_{k+1} = W'
$$

or

$$
aW = P_1 P_2 \dots P_k bV W_{k+1} \rightarrow P_1 P_2 \dots P_k aU W_{k+1} = W'.
$$

Clearly the result W' of this transformation is equal to aW in *M*. If the resulting word *W*^{\prime} starts by the letter *b* (this happens only if $k = 0$!), then the algorithm α terminates by the positive answer. Otherwise the algorithm a repeats the same procedure with the word W' .

Theorem 2 (see [2]) If the word *aW* is left side divisible by *b* in *M* then the algorithm $\mathfrak{A}(aW)$ terminates with the positive result, and in this case we obtain the shortest proof of the left side divisibility of the word *aW* by *b* in *M*.

Conjecture 1 There exists an algorithm **B** that decides for any word aW whether or not the algorithm $\mathfrak{A}(aW)$ terminates.

Problem 1 Check if the conjecture 1 is true.

REFERENCES

1. Adian S.I. (1966). Defining relations and algorithmic problems for groups and semigroups. Proc. Steklov Inst. Math. **85**. (English version published by the American Mathematical Society, 1967).

2. Adian S.I. (1976). Word transformations in a semigroup that is given by a system of defining relations. Algebra i Logika **15**, 611-621; English transl. in Algebra and Logic **15** (1976).

3. Adian S.I. and Oganesian G.U. (1987). On the word and divisibility problems in semigroups with one defining relation. Mat. Zametki **41**, 412-421; English transl. in Math. Notes **41** (1987).

4. Adian S.I. and V.G.Durnev. Decision problems for groups and semigroups. In "Russian Math. Surveys" (Uspechi Mat. Nauk, 2000), vol. 55, No. 2, pp. 207-296.