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Overview

The concepts of non-locality and contextuality play a central rôle in quantum
foundations: Bell’s theorem, the Kochen-Specker theorem etc.

They also play an important rôle in quantum information: entanglement as a
resource, now contextuality as a resource . . .

We use the mathematical language of sheaf theory. We show that non-locality
and contextuality can be characterized precisely in terms of the existence of
obstructions to global sections.

We give linear algebraic methods for computing these obstructions.

Direct path from sheaf theory to computing global sections using MathematicaTM!

This leads to many new insights and results, e.g.

Bell < Hardy < GHZ.

Also new results on local hidden-variable realizations using negative probabilities.
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The Basic Scenario

a
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Alice Bob
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A Probabilistic Model Of An Experiment

A B (0, 0) (1, 0) (0, 1) (1, 1)

a b 0 1/2 1/2 0

a′ b 3/8 1/8 1/8 3/8

a b′ 3/8 1/8 1/8 3/8

a′ b′ 3/8 1/8 1/8 3/8

The measurement contexts are

{a, b}, {a′, b}, {a, b′}, {a′, b′}.

Each measurement has possible outcomes 0 or 1. The matrix entry at row (a′, b)
and column (0, 1) indicates the event

{a′ 7→ 0, b 7→ 1}.

Each row of the table specifies a probability distribution on events OC for a
given choice of measurements C .
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Events As Sections

We fix a set O of possible outcomes for each measurement. For each set of
measurements U ⊆ X , a U-section is a function s : U → O.

We write E : U 7→ OU . If U ⊆ U ′, there is a map

ρU
′

U : E(U ′)→ E(U) :: s 7→ s|U.

We have ρUU = idU , and if U ⊆ U ′ ⊆ U ′′, then

ρU
′

U ◦ ρU
′′

U′ = ρU
′′

U .

This makes E is a presheaf, i.e. a functor E : P(X )op −→ Set.

Given a family {Ui}i∈I with
⋃

i∈I Ui = U and a family of sections {si ∈ E(Ui )}i∈I ,
which is compatible: i.e. for all i , j ∈ I ,

si |Ui ∩ Uj = sj |Ui ∩ Uj ,

then there is a unique section s ∈ E(U) such that s|Ui = si for all i ∈ I .

This says that we can glue together local data which is compatible in the sense of
agreeing on overlaps. This is the sheaf property — E is a sheaf.
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Distributions

Fix a commutative semiring R. An R-distribution on X is a function φ : X → R
which has finite support, and such that∑

x∈X

φ(x) = 1.

We write DR(X ) for the set of R-distributions on X .
Examples: probability distributions, non-empty subsets, signed measures.

Functorial action: Given a function f : X → Y , we define

DR(f ) : DR(X )→ DR(Y ) :: d 7→ [y 7→
∑

f (x)=y

d(x)].

This yields a functor DR : Set −→ Set.

We can compose this functor with the event sheaf E : P(X )op −→ Set, to form a
presheaf DRE : P(X )op −→ Set.
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Restriction As Marginalization

We write the restriction maps of the presheaf DRE explicitly:

Given U ⊆ U ′ we have a map

DRE(U ′)→ DRE(U) :: d 7→ d |U,

where for each s ∈ E(U):

d |U(s) :=
∑

s′∈E(U′),s′|U=s

d(s ′).

Thus d |U is the marginal of the distribution d , which assigns to each section s in
the smaller context U the sum of the weights of all sections s ′ in the larger
context which restrict to s.
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Empirical Models: Reconstructing Probability Tables

We are given a measurement structure M: a family of measurement contexts
which covers X ,

⋃
M = X .

An empirical model for M is a family {eC}C∈M, eC ∈ DRE(C ), which is
compatible: for all C ,C ′ ∈M,

eC |C ∩ C ′ = eC ′ |C ∩ C ′.

Compatibility ⇐⇒ No-Signalling

E.g. in the bipartite case, consider C = {ma,mb}, C ′ = {ma,m
′
b}.

Fix s0 ∈ E({ma}). Compatibility implies∑
s∈E(C),s|ma=s0

eC (s) =
∑

s′∈E(C ′),s′|ma=s0

eC ′(s ′).

This says that the probability for Alice to get the outcome s0(ma) is the same,
whether we marginalize over the possible outcomes for Bob with measurement
mb, or with m′b.

In other words, Bob’s choice of measurement cannot influence Alice’s outcome.
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Global Sections

We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).

Samson Abramsky Joint work with Adam Brandenburger ()The Topology Of Non-Locality and Contextuality 9 / 26



Global Sections
We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).

Samson Abramsky Joint work with Adam Brandenburger ()The Topology Of Non-Locality and Contextuality 9 / 26



Global Sections
We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).

Samson Abramsky Joint work with Adam Brandenburger ()The Topology Of Non-Locality and Contextuality 9 / 26



Global Sections
We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).

Samson Abramsky Joint work with Adam Brandenburger ()The Topology Of Non-Locality and Contextuality 9 / 26



Global Sections
We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).

Samson Abramsky Joint work with Adam Brandenburger ()The Topology Of Non-Locality and Contextuality 9 / 26



Global Sections
We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.

For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).

Samson Abramsky Joint work with Adam Brandenburger ()The Topology Of Non-Locality and Contextuality 9 / 26



Global Sections
We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).

Samson Abramsky Joint work with Adam Brandenburger ()The Topology Of Non-Locality and Contextuality 9 / 26



Global Sections
We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).

Samson Abramsky Joint work with Adam Brandenburger ()The Topology Of Non-Locality and Contextuality 9 / 26



Global Sections
We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).

Samson Abramsky Joint work with Adam Brandenburger ()The Topology Of Non-Locality and Contextuality 9 / 26



Global Sections Subsume Hidden-Variable Theories

Note also that this is a local model:

δs |C (s ′) =
∏
x∈C

δs|x(s ′|x).

The joint probabilities determined by s factor as a product of the probabilities
assigned to the individual measurements, independent of the context in which
they appear. This subsumes Bell locality .

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.
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The joint probabilities determined by s factor as a product of the probabilities
assigned to the individual measurements, independent of the context in which
they appear. This subsumes Bell locality .

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.

So:

existence of a local hidden-variable model for a given empirical model
IFF

empirical model has a global section
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Note also that this is a local model:

δs |C (s ′) =
∏
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δs|x(s ′|x).

The joint probabilities determined by s factor as a product of the probabilities
assigned to the individual measurements, independent of the context in which
they appear. This subsumes Bell locality .

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.

Hence:

No such h.v. model exists (the empirical model is non-local/contextual)
IFF

there is an obstruction to the existence of a global section
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Existence of Global Sections

Linear algebraic method.

Define system of linear equations MX = V.

Solutions ←→ Global sections

Incidence matrix M (0/1 entries). Depends only on M and E .

Enumerate
∐

C∈M E(C ) as s1, . . . , sp.

Enumerate OX as t1, . . . , tq.

M[i , j ] = 1 ⇐⇒ tj |C = si (si ∈ E(C )).

Bell scenarios (n, k, l): matrix is (kl)n × lkn.

Incidence matrix for (2, 2, 2) is 16× 16.
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The (2, 2, 2) Incidence Matrix



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1



This matrix has rank 9. (Verified using MathematicaTM.)

For (3, 2, 2) the matrix is 64× 64, rank = 27. (Generated by script!)
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For (3, 2, 2) the matrix is 64× 64, rank = 27. (Generated by script!)
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The Linear System

A model e determines a vector V = [e(s1), . . . , e(sp)].

Solve
MX = V

for X over the semiring R.

The solution yields weights in R for the global assignments in OX ; i.e. a
distribution in DRE(X ).

The equations enforce the constraints that this distribution marginalizes to yield
the probabilities of the empirical model.

Hence solutions correspond exactly to global sections — which as we have seen,
correspond exactly to local hidden-variable realizations!
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The Bell Model

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 0 1/2 1/2 0

(a′, b) 3/8 1/8 1/8 3/8

(a, b′) 3/8 1/8 1/8 3/8

(a′, b′) 3/8 1/8 1/8 3/8

Solutions in the non-negative reals: this corresponds to solving the linear system
over R, subject to the constraint that X ≥ 0 (linear programming problem).
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Bell’s Theorem

Proposition

The Bell model has no global section.

Proof We focus on 4 out of the 16 equations, corresponding to rows 3, 7, 11
and 14 of the incidence matrix. We write Xi rather than X[i ].

X9 + X10 + X11 + X12 = 1/2

X9 + X11 + X13 + X15 = 1/8

X3 + X4 + X11 + X12 = 1/8

X2 + X6 + X10 + X14 = 1/8

Adding the last three equations yields

X2 + X3 + X4 + X6 + X9 + X10 + 2X11 + X12 + X13 + X14 + X15 = 3/8.

Since all these numbers must be non-negative, the left-hand side of this equation
must be greater than or equal to the left-hand side of the first equation, yielding
the required contradiction. �
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The Hardy Model

We consider the possibilistic version of the Hardy model, specified by the following
table.

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 1 1 1 1

(a′, b) 0 1 1 1

(a, b′) 0 1 1 1

(a′, b′) 1 1 1 0

This is obtained from a standard probabilistic Hardy model by replacing all positive
entries by 1; thus it can be interpreted as the support of the probabilistic model.

Now we are interested in solutions over the boolean semiring, i.e. a boolean
satisfiability problem. E.g. the equation specified by the first row of the incidence
matrix gives the clause

X1 ∨ X2 ∨ X3 ∨ X4

while the fifth yields the formula

¬X1 ∧ ¬X3 ∧ ¬X5 ∧ ¬X7.
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The ‘Hardy paradox’

A solution is an assignment of boolean values to the variables which
simultaneously satisfies all these formulas. Again, it is easy to see by a direct
argument that no such assignment exists.

Proposition

The possibilistic Hardy model has no global section over the booleans.

Proof We focus on the four formulas corresponding to rows 1, 5, 9 and 16 of
the incidence matrix:

X1 ∨ X2 ∨ X3 ∨ X4

¬X1 ∧ ¬X3 ∧ ¬X5 ∧ ¬X7

¬X1 ∧ ¬X2 ∧ ¬X9 ∧ ¬X10

¬X4 ∧ ¬X8 ∧ ¬X12 ∧ ¬X16

Since every disjunct in the first formula appears as a negated conjunct in one of
the other three formulas, there is no satisfying assignment. �
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Boolean obstructions are stronger than probabilistic ones

Proposition

Let V be the vector over R≥0 for a probabilistic model, Vb the boolean vector
obtained by replacing non-zero elements of V by 1. If MX = V has a solution
over R≥0, then MX = Vb has a solution over the booleans.

Proof Simply because
0 7→ 0, r > 0 7→ 1

is a semiring homomorphism. �

So:

non-existence of solution over booleans
⇒

non-existence of solution over R≥0

Bell: no solution over R≥0; solution over the booleans.
Hardy: no solution over the booleans.

Conclusion: Bell < Hardy.
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Solutions over R

Distributions over R: signed measures (‘negative probabilities’).
Dirac, Feynman, . . .

This simply involves solving linear system over R with no additional constraints.

The ‘Popescu-Rohrlich box’:

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 1/2 0 0 1/2

(a′, b) 1/2 0 0 1/2

(a, b′) 1/2 0 0 1/2

(a′, b′) 0 1/2 1/2 0

The PR boxes exhibit super-quantum correlations, and cannot be realized in
quantum mechanics.

Note that there is no semiring homomorphism from the reals to the booleans or
the non-negative reals.
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PR Boxes have global sections over R

Proposition

The PR-boxes, and all probabilistic models of type (2, 2, 2), are extendable over
the reals.

Example solution:

[1/2, 0, 0, 0,−1/2, 0, 1/2, 0,−1/2, 1/2, 0, 0, 1/2, 0, 0, 0].

This vector can be taken as giving a local hidden-variable realization of the
PR box using negative probabilities. Similar realizations can be given for the
other PR boxes.

Note that, since every no-signalling model of (2,2,2)-type is a convex combination
of PR-boxes, it follows from this that all such models, which include all those
arising from quantum mechanics, have local hidden variable realizations using
negative probabilities.
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Global Sections and No-Signalling

No-signalling has been built into our notion of empirical model through the
requirement of compatibility of the family {eC}.

Note, though, that any family, whether compatible or not, gives rise to a linear
system of equations MX = V. If this system has a solution, and the family has a
global section, it is automatically compatible, and hence satisfies no-signalling.

Proposition

Let d ∈ DRE(X ) be a global section. Then the family {d |C}C∈M is compatible.

Proof This follows immediately from the functoriality of restriction. �

Combining this result with Proposition 5, we have the following result.

Proposition

Probabilistic models of type (2, 2, 2) have local hidden-variable realizations with
negative probabilities if and only if they satisfy no-signalling.
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Strong Contextuality

Given an empirical model e, we define the set

Se := {s ∈ E(X ) : ∀C ∈M. s|C ∈ supp(eC )}.

A consequence of the extendability of e is that Se is non-empty.

We say that the model e is strongly contextual if this set Se is empty. Thus
strong non-contextuality implies non-extendability.

In fact, it is strictly stronger. The Hardy model, which as we saw in the previous
section is possibilistically non-extendable, is not strongly contextual. The Bell
model similarly fails to be strongly contextual.

The question now arises: are there models arising from quantum mechanics which
are strongly contextual in this sense?

We shall now show that the well-known GHZ models, of type (n, 2, 2) for all
n > 2, are strongly contextual. This will establish a strict hierarchy

Bell < Hardy < GHZ

of increasing strengths of obstructions to non-contextual behaviour for these
salient models.
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GHZ Models

The GHZ model of type (n, 2, 2) can be specified as follows. We label the two
measurements at each part as X (i) and Y (i), and the outcomes as 0 and 1.

For each maximal context C , every s in the support of the model satisfies the
following conditions:

If the number of Y measurements in C is a multiple of 4, the number of 1’s
in the outcomes specified by s is even.

If the number of Y measurements is 4k + 2, the number of 1’s in the
outcomes is odd.

NB: a model with these properties can be realized in quantum mechanics.
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GHZ Models Are Strongly Contextual
We consider the case where n = 4k . Assume for a contradiction that we have a
global section.

If we take Y measurements at every part, the number of R outcomes under the
assignment has a parity P. Replacing any two Y ’s by X ’s changes the residue
class mod 4 of the number of Y ’s, and hence must result in the opposite parity
for the number of R outcomes under the assignment.

Thus for any Y (i), Y (j) assigned the same value, if we substitute X’s in those
positions they must receive different values. Similarly, for any Y (i), Y (j) assigned
different values, the corresponding X (i), X (j) must receive the same value.

Suppose not all Y (i) are assigned the same value. Then for some i, j, k, Y (i) is
assigned the same value as Y (j), and Y (j) is assigned a different value to Y (k).
Thus Y (i) is also assigned a different value to Y (k). Then X (i) is assigned the
same value as X (k), and X (j) is assigned the same value as X (k). By transitivity,
X (i) is assigned the same value as X (j), yielding a contradiction.

The remaining cases are where all Y’s receive the same value. Then any pair of
X’s must receive different values. But taking any 3 X’s, this yields a contradiction,
since there are only two values, so some pair must receive the same value.
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The remaining cases are where all Y’s receive the same value. Then any pair of
X’s must receive different values. But taking any 3 X’s, this yields a contradiction,
since there are only two values, so some pair must receive the same value.
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Strong Contextuality and Bell Inequalities

Joint work with Ray Lal.

We are looking at connections between strong contextuality and maximal
violations of Bell type inequalities.

For (n, 2, 2) systems we have the following:

The strongly contextual no-signalling devices are exactly the PR boxes.

Thus a novel characterization of PR boxes!

As we have seen, GHZ(n) devices are strongly contextual for all n > 2.
Moreover, these devices achieve maximal violation of certain generalized
Bell inequalities (Mermin et al.).

This is suggestive of a novel and interesting link between quantitative and
qualitative properties of multipartite non-locality and entanglement.
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Final Remarks

Our approach is independent of quantum mechanics, since we aim to
study the general structure of physical theories. No Hilbert spaces in this talk!

Still, all the ideas we have discussed can be represented faithfully in quantum
mechanics. Leads to some interesting developments, e.g. a Generalized
No-Signalling Theorem.

A unified approach to non-locality and contextuality. Kochen-Specker
theorem also falls within the scope of our theory; it is exactly about the
non-existence of global sections, as first observed by Chris Isham.

The mathematical aspects can be pursued much more deeply. Opens the
prospect of applying the powerful tools developed in sheaf theory to the
study of quantum (and computational) foundations.

Interplay between abstract mathematics, foundations of physics, and
computational exploration.
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