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Computability (I) As long as a branch of science offers an abun-

dance of problems, so long it is alive ...

(D. Hilbert, 1900)

Which tasks (abstract problems) can be performed (solved) efficiently?

Computability theory:

I A rigurous definition of the concept of

I a task.
I procedures for solving tasks.

It focuses on computational tasks and automated/mechanical procedures
(computing devices, algorithms).
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Computability (II)

Informal notion of algorithm:

I Producing an output from a set of inputs in a finite number of steps.

Model of computation: formal notions (1931–1936)

I Recursive functions.

I λ–calculus.

I Turing machines.

All these models are equivalent.

This realization led to the invention of the standard universal electronic
computer.
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Computability (III)

Computation is not merely a practical tool.

It is also a major scientific concept.

Scientists now view many natural phenomena as akin to computational
processes.

Today, computational models underlie many research areas in biology and
neuroscience.
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Computability versus Complexity

Computability:

I What problems are computable in a (universal) model?

I Interesting tasks are inherently uncomputable.

I Negative results: There exist infinitely many possible algorithms.
I Computation/Algorithm is a mathematically precise notion.

Complexity (1970)

I What (computable) problems are efficiently solvable?

I Lower bounds on resources required to solve problems on a model.

I Negative results: There exist infinitely many possible algorithms.
I We have to prove mathematically that each algorithm solving the

problem is less efficient.
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Computational Complexity

Study of the intrinsic complexity of computational tasks (abstract problems).

Computational complexity theory is an infant science (about 40 years old).

I Many important results are less than 20 years old.

I Has also been used to prove some metamathematical theorems.

Complexity theory:

I Has failed (until now) to determine the intrinsic complexity of problems
such as SAT or 3-COL

I Has succeeded in establishing that they are computationally equivalent
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Complexity classes (I)

Complexity theory deals with decision problems which are problems that require
a “yes” or “no” answer (X = (IX , θX )).

I Combinatorial optimization problems can be transformed into decision
problems by supplying a target/threshold value for the quantity to be
optimized, and then asking whether this value can be attained.

A complexity class is a set of (decision) problems that can be solved (in a
universal computing model) within given resource bounds.

I The specific computing model does not matter!!!

Church–Turing thesis: every physically realizable computation device can be
simulated by a TM

Strong Church–Turing thesis: every physically realizable computation device
can be simulated by a TM with polynomial overhead
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Complexity classes (II)

Solve a decision problem ≡ recognize a language.

I A DTM, M, recognizes a language L whenever, for any input string u, if
u ∈ L, then the answer of M(u) is yes, and the answer is no otherwise.

I A NDTM, M, recognizes L if for any string u over Γ, u ∈ L iff there exists
a computation of M with input u such that the answer is yes.

Determinism versus nondeterminism:

I The key: how to accept (reject) an input string.

Each abstract problem has a fixed reasonable encoding scheme associated with
it.
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Complexity classes (III)

P: decision problems with feasible procedures.

I P is the class of all decision problems solvable by DTMs in polynomial
time.

NP: decision problems whose solutions can be efficiently verified.

I NP is the class of all decision problems solvable by NDTMs in polynomial
time
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The P versus NP problem

I Many problems can be solved by exhaustive search.

I Can it be replaced by a more efficient search algorithm?

I Whether or not finding solutions is harder than checking the correctness
of solutions.

I Whether or not discovering proofs is harder than verifying their
correctness.

• This is essentially the famous P versus NP problem

. . . the central problem of Computational Complexity theory.

It is widely believed that it is harder

I finding (resp. proving) than checking (resp. verifying)

I solving a problem than checking the correctness of a solution

I . . . P 6= NP
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Membrane Computing

• P systems provide nondeterministic models of computation.

• A computational complexity theory in Membrane Computing is proposed.

• Polynomial complexity classes associated with (cell–like and tissue–like) P
systems are presented.

I A notion of acceptance must be defined in the new (nondeterministic)
framework.

? We consider a definition of acceptance different than the classical

one for nondeterministic devices.
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Cell–like Framework

• P systems without input: Π = (Γ,H, µ,M1, . . . ,Mq,R, iout).

• P systems with input: Π = (Γ,Σ,H, µ,M1, . . . ,Mq,R, iin, iout).

• Recognizer P systems:

I The working alphabet contains two distinguished elements yes and no.

I All computations halt.

I For any computation of the system, either object yes or object no (but
not both) must have been sent to the output region of the system, and
only at the last step of the computation.

• Accepting/rejecting computations for recognizer P systems
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Uniform families (I)

• P systems are computing devices of finite size and they have a finite description
with a fixed amount of initial resources.

• In order to solve a decision problem a (possibly infinite) family of P systems is
considered.

• The concept of solvability in the framework of P systems also takes into
account the pre-computational process of (efficiently) constructing the family
that provides the solution.

I The terminology uniform family is used to denote that this construction is
performed by a single computational machine.
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Uniform families (II)

• P systems without input membrane:

I A family Π = {Π(w) : w ∈ IX} associated with a decision problem

X = (IX , θX ) is uniform if there exists a DTM which constructs the

system Π(w) from the instance w ∈ IX .

I In such a family, each P system usually processes only one instance.
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Uniform families (III)

• P systems with input membrane:

I A family Π = {Π(n) : n ∈ N} is uniform if there exists a DTM which
constructs the system Π(n) from n ∈ N (which on input 1n outputs Π(n)).

I In such a family, the P system Π(n) will process all the instances

with numerical parameters (reasonably) encoded by n.

I For these families the concept of polynomial encoding is introduced:

I A polynomial encoding of X in Π is a pair (cod , s) of

polynomial–time computable functions over IX such that for each

w ∈ IX , s(w) ∈ N and cod(w) is an input multiset of Π(s(w)).

I Polynomial encodings are stable under polynomial–time reductions.
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Families polynomially uniform by TM

• In both cases, the family should be constructed in an efficient way.

• Polynomially uniform by Turing machines: a uniform (by a single Turing
machine) and effective (in polynomial time) construction of the family.

I A family Π of recognizer P systems is polynomially uniform by Turing
machines if there exists a DTM working in polynomial time which
constructs Π(w) (resp. Π(n)) from w ∈ IX (resp., from n ∈ N).
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Confluent P systems

• Trying to capture the true concept of algorithm by nondeterministic P systems.

• Let X = (IX , θX ) be a decision problem, and Π = {Π(w) : w ∈ IX} be a family
of recognizer P systems without input membrane.

I Π is sound with respect to X : for each w ∈ IX , if there exists an
accepting computation of Π(w), then θX (w) = 1.

I Π is complete with respect to X : for each w ∈ IX , if θX (w) = 1, then
every computation of Π(w) is an accepting computation.

• Similar definition to families of recognizer P systems with input membrane.

• Sound + Complete = Confluent
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Polynomial time solvability by using P systems (I)

• Semi–uniform solutions.

I A decision problem X is solvable in polynomial time by a family of
recognizer P systems without input membrane Π = {Π(w) : w ∈ IX}, if:

? The family Π is polynomially uniform by Turing machines.

? The family Π is polynomially bounded: there exists k ∈ N such that

for each w ∈ IX , every computation of Π(w) performs at most |w |k

steps.

? The family Π is sound and complete with respect to X .

I X ∈ PMC∗R.

I PMC∗R is closed under complement and polynomial–time reductions.
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Polynomial time solvability by using P systems (II)

• Uniform solutions:

I A decision problem X is solvable in polynomial time by a family of
recognizer P systems without input membrane Π = {Π(n) : n ∈ N}, if:

? The family Π is polynomially uniform by Turing machines.

? There exists a polynomial encoding (cod , s) of X in Π such that:

? The family Π is polynomially bounded: there exists k ∈ N
such that for each w ∈ IX , every computation of Π(s(w)) with
input cod(w) performs at most |w |k steps.

? The family Π is sound and complete with respect to X .

I X ∈ PMCR.

I PMCR is closed under complement and polynomial–time reductions.

I We have PMCR ⊆ PMC∗R
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Limitations of basic transition P systems (I)

• Let M be a DTM with input alphabet ΣM . The decision problem associated
with M is XM = (IM , θM), where:

I IM = Σ∗M .

I For every w ∈ Σ∗M , θM(w) = 1 if and only if M accepts w .

• A Turing machine M is simulated in polynomial time by a family of recognizer
P systems from R if XM ∈ PMCR.

• Basic transition P systems: only evolution, communication, and dissolution
rules.

• T : class of recognizer basic transition P systems.

21 / 45



Limitations of basic transition P systems (II)

• Every DTM working in polynomial time can be simulated in polynomial time by
a family of recognizer basic transition P systems with input membrane
(Seville theorem).

• If a decision problem is solvable in polynomial time by a family of recognizer
basic transition P systems with input membrane, then there exists a DTM
solving it in polynomial time.

• Theorem: P = PMCT = PMC∗T .

I Corollary: P 6= NP if and only if every, or at least one, NP–complete
problem is not in PMCT = PMC∗T .
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P Systems with Active Membranes

• Π = (Γ,H, µ,M1, . . . ,Mq , R, iout ),

(a) [ a→ u ]αh , for h ∈ H,α ∈ {+,−, 0}, a ∈ Γ, u ∈ Γ∗ (object evolution rules).

(b) a [ ]
α1
h
→ [ b ]

α2
h

, for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send–in communication rules).

(c) [ a ]
α1
h
→ [ ]

α2
h

b, for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send–out communication rules).

(d) [ a ]αh → b, for h ∈ H, α ∈ {+,−, 0}, a, b ∈ Γ (dissolution rules).

(e) [ a ]
α1
h
→ [ b ]

α2
h

[ c ]
α3
h

, for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Γ (division rules for elementary

membranes).

(f ) [ [ ]
α1
h1
. . . [ ]

α1
hk

[ ]
α2
hk+1

. . . [ ]
α2
hn

]αh → [ [ ]
α3
h1
. . . [ ]

α3
hk

]
β
h

[ [ ]
α4
hk+1

. . . [ ]
α4
hn

]
γ
h

, for k ≥ 1, n > k,

h, h1, . . . , hn ∈ H, α, β, γ, α1, . . . , α4 ∈ {+,−, 0} and {α1, α2} = {+,−} (division rules for
non–elementary membranes).

• The sets NAM,AM(+n) and AM(−n).
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P Systems with Active Membranes: limitations

• A deterministic P system with active membranes but without membrane division
can be simulated by a DTM with a polynomial slowdown (Milano theorem).

Corollary PMC∗NAM ⊆ P.

Theorem: P = PMCNAM = PMC∗NAM.
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P Systems with Active Membranes: efficiency (I)

• The first efficient solutions to NP–complete problems by using P systems with
active membranes were given in a semi–uniform way (S.N. Krishna and R. Rama (1999), A.

Păun, Gh. Păun, C. Zandron, C. Ferretti and G. Mauri (2000), A. Obtulowicz (2001)).

I NP ∪ co-NP ⊆ PMC∗AM(−n)

• In the framework of AM(−n), efficient uniform solutions NP–complete
problems have been given (Seville team (2003), A. Alhazov, C. Martin–Vide, L. Pan (2004), etc.).

I NP ∪ co-NP ⊆ PMCAM(−n)

• A borderline between efficiency and non–efficiency: division rules in the
framework of P systems with active membranes.
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P Systems with Active Membranes: efficiency (II)

• In the framework of AM(+n), P. Sośık (2003) gave an efficient semi–uniform
solution to QBF-SAT.

I PSPACE ⊆ PMC∗AM(+n)

P. Sośık and A. Rodŕıguez–Patón (2007) have proven that the reverse inclusion
holds as well.

I Nevertheless, the notion of uniform family of P systems considered is
different, although maybe the proof can be adapted. In this case the
following would hold: PSPACE = PMC∗AM(+n)

• The above inclusion has been extended by A. Alhazov, C. Martin–Vide and L.
Pan (2003) showing that QBF-SAT can be solved in a linear time and in a
uniform way.

I PSPACE ⊆ PMCAM(+n).
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P Systems with Active Membranes: efficiency (III)

• A.E. Porreca, G. Mauri and C. Zandron (2006) described a (deterministic and
efficient) algorithm simulating a single computation of any confluent recognizer
P system with active membranes and without input. Such P systems can be
simulated by a DTM working in exponential time.

I PMC∗AM(+n) ⊆ EXP.

I PSPACE ⊆ PMCAM(+n) ⊆ PMC∗AM(+n) ⊆ EXP.

• Conclusion: the usual framework of AM for solving decision problems is too
powerful from the complexity point of view.

• It would be interesting to investigate weaker models of P systems with active
membranes able to characterize classical complexity classes below NP and
providing borderlines between efficiency and non–efficiency.
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Polarizationless P systems with active membrane
• Π = (Γ,H, µ,M1, . . . ,Mq , R, iout ),

(a) [ a→ u ]h , for h ∈ H, a ∈ Γ, u ∈ Γ∗ (object evolution rules).

(b) a [ ]h → [ b ]h , for h ∈ H, a, b ∈ Γ (send–in communication rules).

(c) [ a ]h → [ ]h b, for h ∈ H, a, b ∈ Γ (send–out communication rules).

(d) [ a ]h → b, for h ∈ H, a, b ∈ Γ (dissolution rules).

(e) [ a ]h → [ b ]h [ c ]h , for h ∈ H, a, b, c ∈ Γ (division rules for elementary membranes or weak division rules
for non-elementary membranes).

(f ) [ [ ]h1
. . . [ ]hk

[ ]hk+1
. . . [ ]hn ]h → [ [ ]h1

. . . [ ]hk
]h [ [ ]hk+1

. . . [ ]hn ]h , for k ≥ 1, n > k,

h, h1, . . . , hn ∈ H, (strong division rules for non–elementary membranes).

• Rules of type (f ) are used only for k = 1, n = 2, that is, rules of the form (f ) [ [ ]h1
[ ]h2

]h → [ [ ]h1
]h [ [ ]h2

]h .

They can also be restricted to the case where they are controlled by the presence of a specific membrane, that is,

rules of the form (g) [ [ ]h1
[ ]h2

[ ]p ]h → [ [ ]h1
[ ]p ]h [ [ ]h2

[ ]p ]h .

• The sets NAM0,AM0(α, β, γ, δ), where α ∈ {−d ,+d},
β ∈ D = {−n,+nw ,+ns,+nsw ,+nsr}, γ ∈ {−e, +e}, and δ ∈ {−c,+c}.
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A conjecture of Păun

At the beginning of 2005, Gh. Păun (problem F from 1) wrote:

My favorite question (related to complexity aspects in P
systems with active membranes and with electrical charges)
is that about the number of polarizations. Can the polar-
izations be completely avoided? The feeling is that this is
not possible – and such a result would be rather sound:
passing from no polarization to two polarizations amounts
to passing from non–efficiency to efficiency.

The so–called Păun’s conjecture can be formally formulated:

P = PMC[∗]

AM0(+d,−n,+e,+c)

1
Gh. Păun: Further twenty six open problems in membrane computing. Third Brainstorming Week on

Membrane Computing (M.A. Gutiérrez et al. eds.), Fénix Editora, Sevilla, 2005, pp. 249–262.
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A partial affirmative answer
• Non–efficiency of polarizationless P systems with active membranes which do

not make use of dissolution rules (Seville team, 2006):

Theorem: P = PMC[∗]

AM0 (−d,β,+e,+c)
, where β ∈ D.

I The notion of dependency graph:

? Simulating accepting computations in AM0 (−d , β,+e,+c) by
means of reachability problems in a static directed graph.

N. Murphy and D. Woods (2007) gave a further partial affirmative answer in
the case of symmetric division rules for elementary membranes:
[ a ]h → [ b ]h[ b ]h.

I P = PMC[∗]

AM0 (+d,−n(sym),+e,+c)
.

D. Woods, N. Murphy, M.J. Pérez, A. Riscos (2009) have provided a P upper
bound on systems from AM0 (+d ,−n,−e,−c), having an initial membrane
structure that is a single (linear) path (D).

I P = PMC[∗]
D .
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A partial negative answer

• Efficiency of polarizationless P systems with active membranes when dissolution
and division for non–elementary membranes, in the strong sense, is permitted
(A. Alhazov, L. Pan (SAT, 2004), Seville team (SS, 2006))

I NP ∪ co-NP ⊆ PMC∗AM0 (+d,+ns,+e,+c).

• A new borderline in AM0 (+ns,+e,+c): dissolution rules.

This result has been improved (A. Alhazov, M.J. Pérez (QBF–SAT, 2007)):

I PSPACE ⊆ PMCAM0 (+d,+ns,+e,+c).
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• Other interesting results: forbidding evolution and/or communication rules.

I NP ∪ co-NP ⊆ PMC∗AM0 (+d,β,+e,−c), where β ∈ {+nw ,+ns} (A. Alhazov,

L. Pan, Gh. Păun, 2004).

I NP ∪ co-NP ⊆ PMC∗AM0 (+d,+nsw,−e,−c) (Milano team and Seville team, 2008).

I PSPACE ⊆ PMC∗AM0 (+d,+nsr,−e,−c) (Milano team and Seville team, 2008).
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Tissue–like Framework
• Polarizationless tissue P system of degree q ≥ 1 with cell division:

Π = (Γ,Σ,Ω,M1, . . . ,Mq , R, iin, iout )

I Γ is a finite alphabet (called working alphabet) whose elements are called objects;

I Σ is a finite alphabet (called input alphabet) strictly contained in Γ ;

I Ω ⊆ Γ \ Σ is a finite alphabet, describing the set of objects located in the environment in arbitrarily many
copies each;

I M1, . . . ,Mq are strings over Γ \ Σ, describing the multisets of objects placed in the q cells of the
system;

I R is a finite set of rules, of the following forms:

I (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j , and u, v ∈ Γ∗ communication rules

I [ a ] i → [ b ] i [ c ] i , where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ division rules;.
I iin ∈ {1, . . . , q} is the input cell, and iout ∈ {0, 1, . . . , q} is the output cell.

• Length of the communication rule (i, u/v, j) = |u| + |v|.

• Result of the halting computation C = {Ci}i<r :

Output(C) = ΨΓ\Ω(Mr−1,0)

where Ψ is the Parikh function, and Mr−1,0 is the multiset associated with the environment at Cr−1.
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• Recognizer tissue P system with cell division

Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin)

I Γ \ Ω has two distinguished objects yes and no, present in at least one
copy in some initial multisets M1, . . . , Mq.

I All computations halt.

I For each computation, either yes or no (but not both) must have been
released into the environment (only in the last step of the computation).
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• Result of the halting computation C = {Ci}i<r :

Output(C) =


yes, if Ψ{yes,no}(Mr−1,0) = (1, 0)

∧ Ψ{yes,no}(Mk,0) = (0, 0) for k = 0, . . . , r − 2
no, if Ψ{yes,no}(Mr−1,0) = (0, 1)

∧ Ψ{yes,no}(Mk,0) = (0, 0) for k = 0, . . . , r − 2

where Ψ is the Parikh function, and Mi,0 is the multiset associated with the
environment at Ci .

• The sets T C, T DC and T DC(k).
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Cell separation rules

• [ a ]
i
→ [ Γ1 ]

i
[ Γ2 ]

i

where:

I i ∈ {1, 2, . . . , q}.
I a ∈ Γ.

I {Γ1, Γ2} is a fixed partition of Γ.

• The set T SC(k).
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Polynomial–Time Solvability

• A decision problem X = (IX , θX ) is solvable in polynomial time by a family
Π = {Π(n) : n ∈ N} of recognizer tissue P systems if:

I The family Π is polynomially uniform by Turing machines.

I There exists a pair (cod , s) of polynomial-time computable functions over

IX such that:

I For each u ∈ IX , s(u) ∈ N and cod(u) is an input multiset of

Π(s(u)).
I The family Π is polynomially bounded with regard to (X , cod , s).
I The family Π is sound and complete with regard to (X , cod , s).

• The complexity class PMCR.
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Efficiency of Tissue P Systems with cell division

• An efficient solution of the Vertex Cover problem was given2 by using a family
of recognizer tissue P systems from T DC(3).

? NP ∪ co-NP ⊆ PMCT DC(3).

• This result has been improved recently3

? NP ∪ co-NP ⊆ PMCT DC(2).

• BUT ...

? P = PMCT DC(1).

(dependency graph technique)

2
D. D́ıaz–Pernil, M.J. Pérez–Jiménez, A. Riscos–Núñez and A. Romero–Jiménez. Computational Efficiency of

Cellular Division in Tissue-like Membrane Systems. Romanian Journal of Information Science and Technology, 11, 3

(2008), 229–241.
3

A.E. Porreca, N. Murphy, M.J. Pérez-Jiménez. submitted, 2011.
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Tissue without cell division vs Basic transition (I)

• A family of recognizer tissue from T C which solves a decision problem can be
efficiently simulated by a family from T solving the same problem.

I Π′ efficiently simulates Π if:

? Π′ can be constructed from Π by a DTM working in polynomial

time.
? There exists a bijective function, f , from Comp(Π) onto Comp(Π′)

such that:

? C ∈ Comp(Π) is an accepting computation iff f (C) ∈
Comp(Π′) is an accepting one.

? There exists a polynomial p(n) such that for each C ∈
Comp(Π) we have |f (C)| ≤ p(|C|).
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Tissue without cell division vs Basic transition (II)

Let Π = (Γ,Σ,Ω,M1, . . . ,Mq ,R, iin) ∈ T C.

Let us consider S(Π) = (Γ′,Σ′, µ,M′1,R
′, i′in) ∈ T defined as follows:

? Γ′ = {(a, i) : a ∈ Γ ∧ i ∈ {1, . . . , q}} ∪ {(a, 0) : a ∈ Γ \ Ω} ∪ {yes, no}.

? Σ′ = {(a, iin) : a ∈ Σ}.

? µ = [ ]1.

? M′1 =

q∑
i=1

∑
a∈Γ\Σ

(
a, i)Mi (a).

? In the set R′ the following rules associated with S(Π) are included:

? For each rule r
Π
≡ (i, a1 . . . am / b1 . . . bn, j) ∈ R with i, j 6= 0, we consider the rule r

S(Π)
:

(a1, i) . . . (am, i)(b1, j) . . . (bn, j)→ (b1, i) . . . (bn, i)(a1, j) . . . (am, j)

? For each rule r
Π
≡ (i, a1 . . . am / b1 . . . bn, 0) ∈ R with i 6= 0, we consider the rule r

S(Π)
:

(a1, i) . . . (am, i)(b1, 0) . . . (bs , 0)→ (b1, i) . . . (bn, i)(a1, 0) . . . (ar , 0)

where a1, . . . , ar , b1, . . . , bs /∈ Ω and ar+1, . . . , am, bs+1, . . . , bn ∈ Ω.

? For each rule r
Π
≡ (0, a1 . . . am / b1 . . . bn, i) ∈ R with i 6= 0, we consider the rule r

S(Π)
:

(a1, 0) . . . (ar , 0)(b1, i) . . . (bn, i) → (b1, 0) . . . (bs , 0)(a1, i) . . . (am, i)

where a1, . . . , ar , b1, . . . , bs /∈ Ω and ar+1, . . . , am, bs+1, . . . , bn ∈ Ω.

? (yes, 0) → (yes, out); (no, 0) → (no, out).

? i′in = 1.
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Tissue without cell division vs Basic transition (III)

Proposition: If Π ∈ T C, then S(Π) ∈ T efficiently simulates Π.

P = PMCT C .
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Efficiency of Tissue P Systems with cell separation

• An efficient solution of the SAT problem was given4 by using a family of
recognizer tissue P systems from T SC(6).

? NP ∪ co-NP ⊆ PMCT SC(6).

• This result has been improved recently5

? NP ∪ co-NP ⊆ PMCT SC(3).

• BUT ...

? P = PMCT SC(1).

(dependency graph technique3)

4
L. Pan, M.J. Pérez–Jiménez. Computational Complexity of tissue–like P systems with cell separation. Journal

of Complexity, 26 (2010), 296–315
5

M.J. Pérez–Jiménez, P. Sosik. On the efficiency of tissue P systems with cell separation, submitted 2011.
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Open problems (I)

(1) Is there some class R of recognizer P systems such that the inclusion
PMCR ⊆ PMC∗R is strict?

(2) Is it possible to efficiently solve PSPACE–complete problems by using
families of P systems from AM(−n)?

(3) Is P = PMC[∗]

AM0(+d,−n,+e,+c)
true? (Păun’s conjecture).

(4) It is well known that PSPACE ⊆ PMC∗AM0(+d,+nsr,−e,−c). Determine an
upper bound for that membrane computing complexity class.
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Open problems (II)

(5) What is the efficiency of P systems from AM0(α, β,−e,−c)? Are there
any relations with the results obtained for polarizationless P systems?

(6) Is it NP ∪ co-NP ⊆ PMCT SC(2)?

(7) Would it be possible to solve efficently NP–complete problems by families
from T DC(2) where all rules of length 3 were symport?
What about T SC(3)?

(8) Would it be possible to solve efficently NP–complete problems by families
from T DC(2) or T SC(3) where the environment is passive (as in cell–like
P systems)?

45 / 45


